Convegno Regionale AIOM Liguria 2018

La Biologia del Carcinoma Mammario (TN) e le Future Implicazioni Terapeutiche

Matteo Lambertini

ESMO Fellow
Institut Jules Bordet, Brussels (Belgium)

Genova
29 settembre 2018

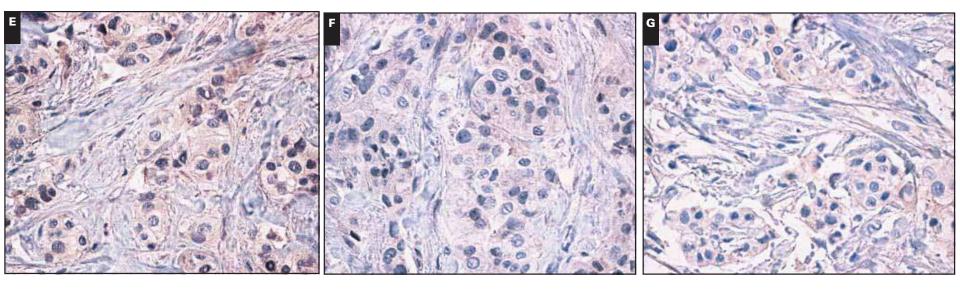
Disclosure Information

Relationship Relevant to this Session

Lambertini, Matteo:

- Consultant or advisor: Teva
- Honoraria: Theramex

- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions


- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions

What is Triple Negative Breast Cancer (TNBC)?

Estrogen receptor

Progesterone receptor

HER2

TNBC: Histological Features

Invasive ductal carcinoma NOS — high grade

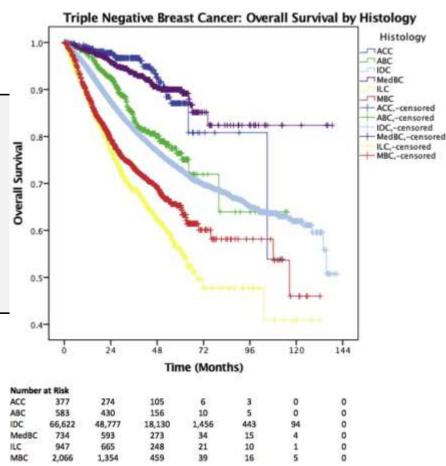
Invasive lobular carcinoma — high grade

Metaplastic carcinoma — high grade

Myoepithelial carcinoma

High grade neuroendocrine (oat-cell) carcinoma

Good prognosis

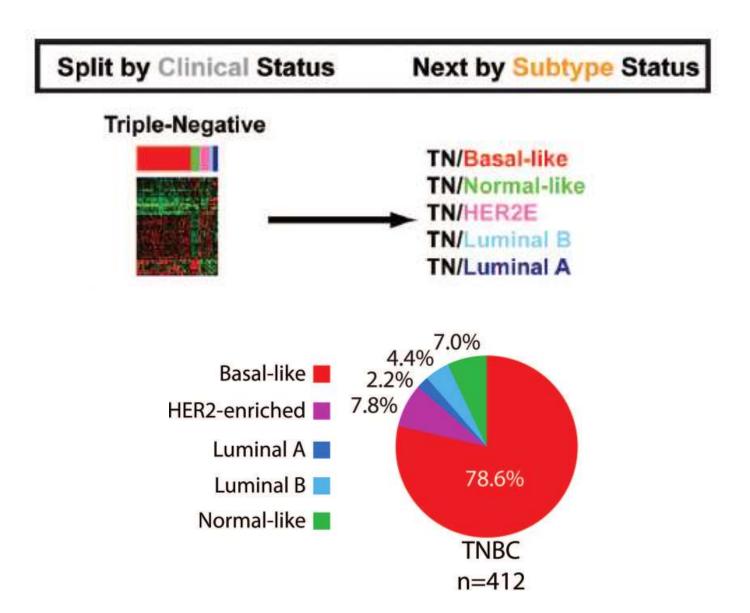

Apocrine carcinoma – low grade

Medullary carcinoma

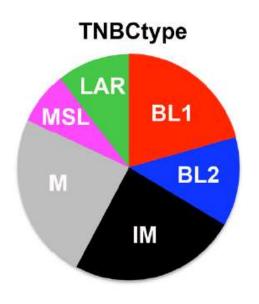
Secretory breast carcinoma

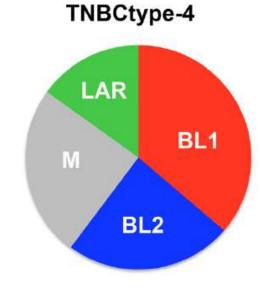
Adenoid cystic carcinoma

Metaplastic carcinoma – low grade (adenosquamous and fibromatosis-like)



'Triple negative (ductal)' Cytotoxics


Medullary and adenoid cystic carcinomas may not require any adjuvant cytotoxics (if node negative).


Oakman C et al, Breast 2010;19:312-21. Mills MN et al, Eur J Cancer 2018;98:48-58 Goldhirsch A et al, Ann Oncol 2011;22:1736-47

TNBC: Transcriptomic Landscape

TNBC: Transcriptomic Landscape

<u>Subtype</u>

Basal-like 1
Basal-like 2
Immunomodulatory
Mesenchymal
Mesenchymal stem-like
Luminal androgen receptor

"Driver pathways"

high Ki-67; DNA damage response GF pathways Immune genes Cell motility Cell motility; claudin-low Steroid pathways

Possible sensitivity

PARP-I and Cisplatin Anti-EGFR Immunotherapy PI3K-mTOR Inh Anti-angiogenetic AR antagonist

TNBC: Genomic Landscape

Substantial biological heterogeneity in the different TNBC molecular subtypes at the somatic mutation, copy number and gene expression levels

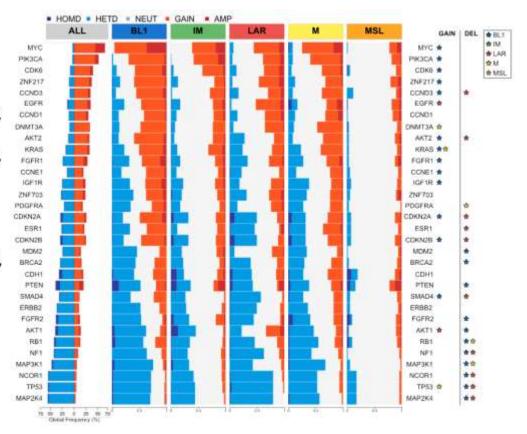
Gene involved in DNA repair mechanism are more deleted in BL1

BL1

GAIN/AMP: AKT2, CCND3, CCNE1, CDK6, CDKN2A/B, FGFR1, IGF1R, KRAS, MYC, PIK3CA, SMAD4 & ZNF217.

HETD/HOMD: AKT1, BRCA2, FGFR2, MAP2K4, MAP3K1, MDM2, NCOR1, NF1, PTEN, RB1 & TP53.

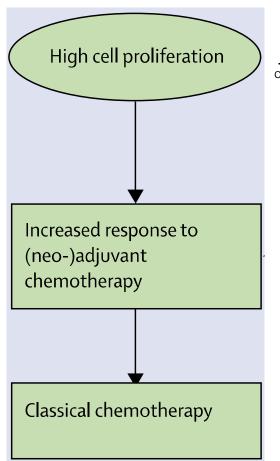
LAR

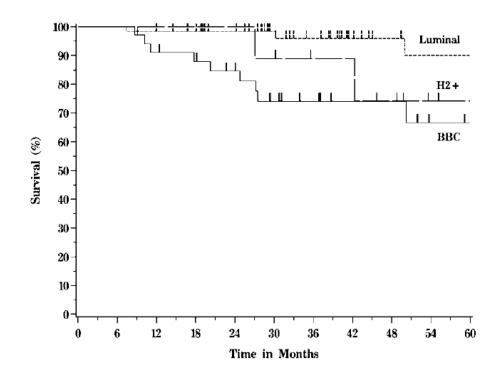

GAIN/AMP : AKT1 & EGFR.

HETD/HOMD : AKT2, CDKN2A/B, ESR1, MAP2K4,

NCOR1, NF1, SMAD4 & TP53

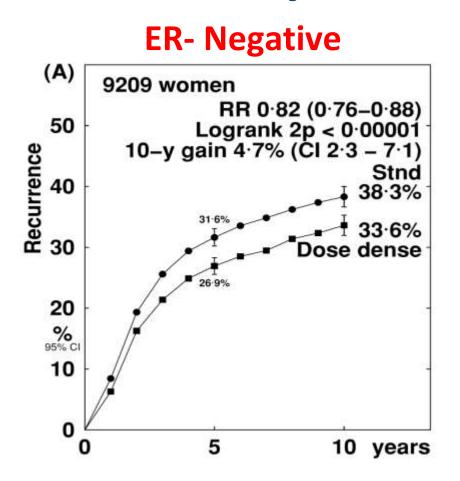
M


GAIN/AMP: DNMT3A, KRAS & TP53. HETD/HOMD: MAP3K1, PDGFRA & RB1.

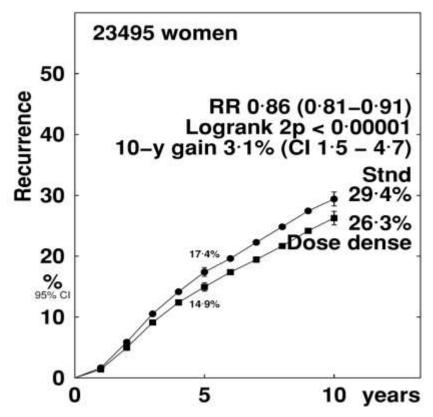

- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions

High Cell Proliferation: the TNBC Paradox

The Triple Negative Paradox: Primary Tumor Chemosensitivity of Breast Cancer Subtypes

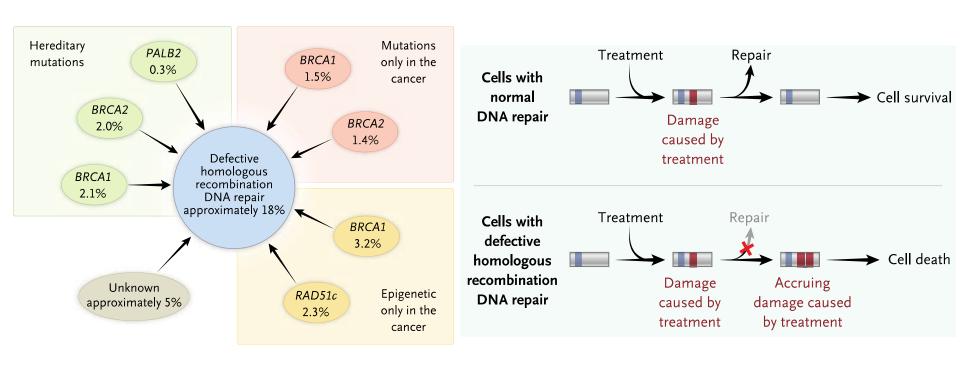


	Entire population	Basal-like (n = 34)	HER2 [*] (n = 11)	Luminal B (n = 26)	Luminal A (n = 36)	Р
Clinical response to AC						
Complete response	15 (14%)	10 (29%)	1 (10%)	2 (8%)	2 (6%)	< 0.0001
Partial response	50 (47%)	19 (56%)	6 (60%)	13 (50%)	12 (33%)	
Stable disease	40 (38%)	5 (15%)	3 (30%)	11 (42%)	21 (58%)	
Progressive disease	1 (1%)	0	0	0	1 (3%)	
Complete response + partial response	65 (61%)	29 (85%)	7 (70%)	15 (58%)	14 (39%)	< 0.0001



Therapeutic Implications: Dose-Dense CT

Pooled Analysis: recurrence by ER status



- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions

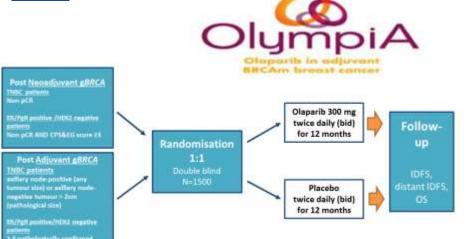
BRCAness/HRD/Genomic Scars

Therapeutic Implications: Platinum and PARPi

Platinum-based chemotherapy

Annals of Oncology 29: 1497-1508, 2018 doi:10.1093/annonc/mdy127 Published online 4 June 2018

REVIEW


Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis

F. Poggio^{1,2}, M. Bruzzone³, M. Ceppi³, N. F. Pondé¹, G. La Valle⁴, L. Del Mastro^{5,6}, E. de Azambuja¹ & M. Lambertini 1,7*

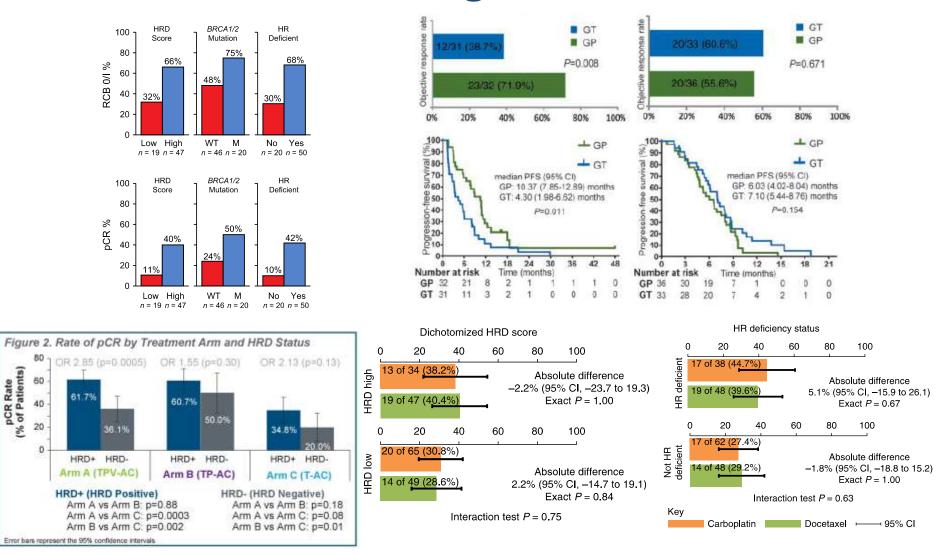
Carboplatin in BRCA1/2-mutated and triplenegative breast cancer BRCAness subgroups: the TNT Trial

Andrew Tutt 101.2*, Holly Tovey3, Maggie Chon U. Cheang3, Sarah Kernaghan3, Lucy Kilburn3, Patrycja Gazinska², Julie Owen⁴, Jacinta Abraham⁵, Sophie Barrett⁶, Peter Barrett-Lee⁵, Robert Brown^{7,8}, Stephen Chan⁹, Mitchell Dowsett^{1,10}, James M Flanagan⁷, Lisa Fox³, Anita Grigoriadis^{6,2} Alexander Gutin¹¹, Catherine Harper-Wynne¹², Matthew Q. Hatton¹³, Katherine A. Hoadley¹⁴, Jyoti Parikh¹⁵, Peter Parker^{16,17}, Charles M. Perou¹⁴, Rebecca Roylance¹⁸, Vandna Shah², Adam Shaw¹⁹, Ian E. Smith²⁰, Kirsten M. Timms¹¹, Andrew M. Wardley ^{© 21}, Gregory Wilson²², Cheryl Gillett^{4,23} Jerry S. Lanchbury¹¹, Alan Ashworth²⁴, Nazneen Rahman^{25,26}, Mark Harries²⁷, Paul Ellis²⁷, Sarah E. Pinder 64,23 and Judith M. Bliss3

PARPi

Open access

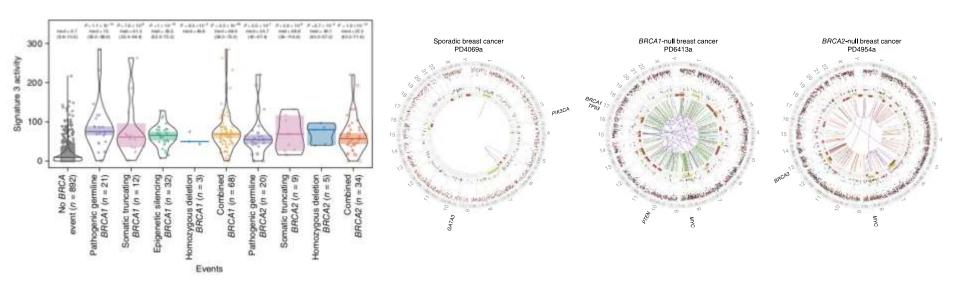
Review

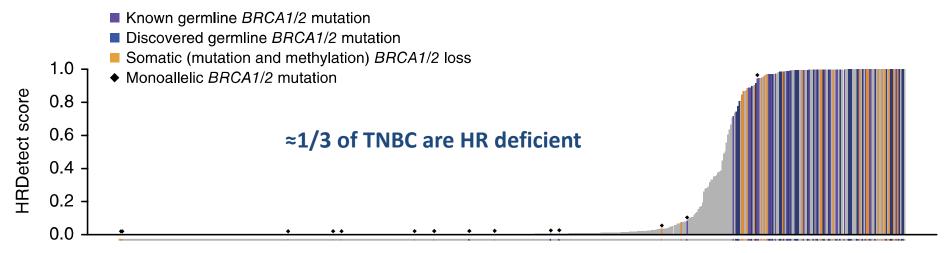

Single-agent PARP inhibitors for the treatment of patients with BRCAmutated HER2-negative metastatic breast cancer: a systematic review and meta-analysis

> Francesca Poggio, ^{1,2} Marco Bruzzone, ³ Marcello Ceppi, ³ Benedetta Conte, ² Samuel Martel, ⁴ Christian Maurer, ⁵ Marco Tagliamento, ² Giulia Viglietti, ⁶ Lucia Del Mastro,⁷ Evandro de Azambuja,¹ Matteo Lambertini^{1,6}

ClinicalTrials.gov Identifier: NCT02032823

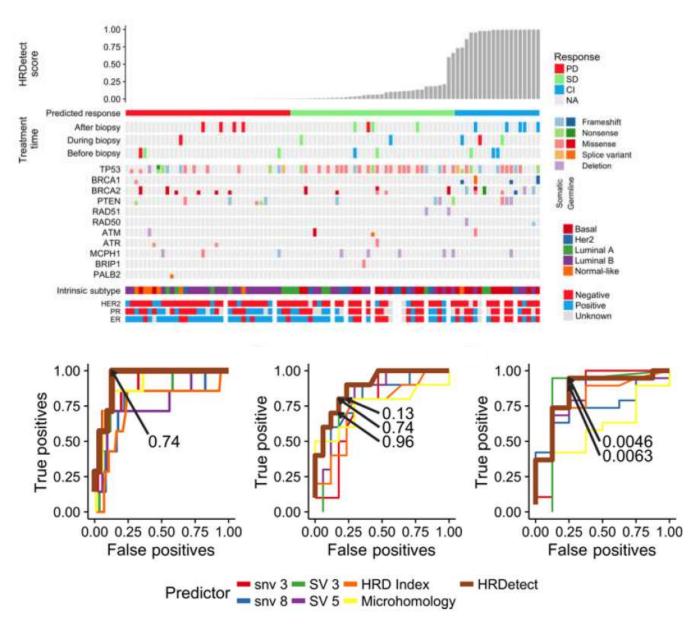
Poggio F et al, Ann Oncol 2018;29(7):1497-508


HRD Status to Predict Treatment Response: Conflicting Results!

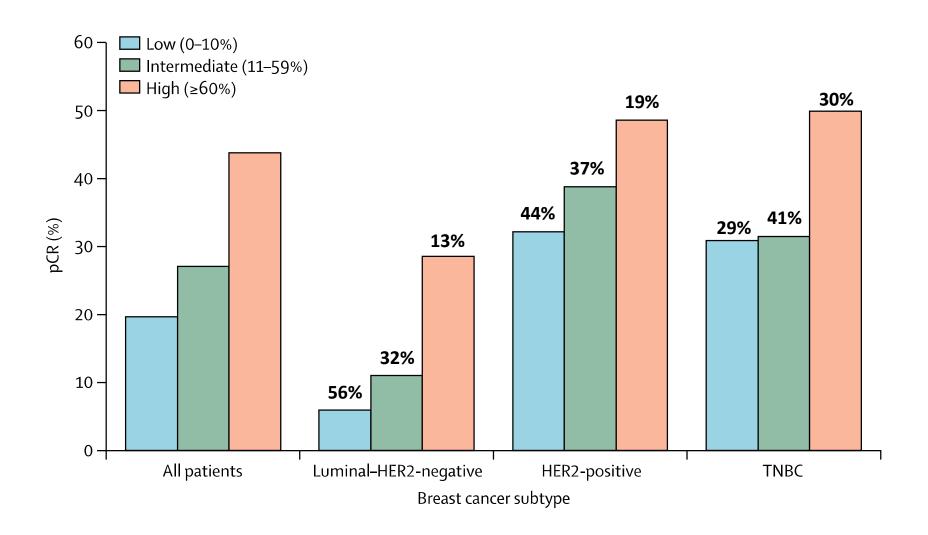

Telli ML et al, Clin Cancer Res 2016;22(15):3764-73. Zhang J et al, Ann Oncol 2018;29(8):1741-7

Telli ML et al, ASCO 2018. Tutt A et al, Nat Med 2018;24(5):628-37

Mutational Signatures of HRD: Promising Data



Combination of multiple HRD scars into HRDetect (somatic mutational signature)


560 breast cancer samples

Mutational Signatures of HRD: Promising Data

- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions

Increased Immune-Inflitrate: TILs

Therapeutic Implications: Available Data

Metastatic disease

Study	Phase	Checkpoint inhibitor	Combination	Population	Number of patients	PD-L1 selection	ORR (RECIST 1.1)
KEYNOTE-012 ²⁷	1b	Pembrolizumab	Nil	TNBC; pre-treated	32	PD-L1 positive (expression in stroma or ≥1% tumour cells)	18.5%
KEYNOTE-086 ²⁹ ,	2	Pembrolizumab	Nil	TNBC; Cohort A, pre-treated; Cohort B, first line	Cohort A: 170 Cohort B: 52	Cohort A, unselected; Cohort B, PD-L1 positive (combined positive score ≥1%)	Cohort A: 5% Cohort B: 23%
Emens et al. ³¹	1a	Atezolizumab	Nil	TNBC; majority pre-treated	21	PD-L1 positive (≥5% of infiltrating immune cells)	24%
Schmid et al. ²⁵	1a	Atezolizumab	Nil	TNBC; first line or pre-treated	115	Unselected	10%
Tolaney et al. ³²	1b/2	Pembrolizumab	Eribulin	TNBC; first line or pre-treated	39	Unselected	33.3%
Adams et al. ³⁴	1b	Atezolizumab	Nab-paclitaxel	TNBC; first line or pre-treated	32	Unselected	42%
KEYNOTE-028 ³⁶	1b	Pembrolizumab	Nil	ER+/HER2-; pre-treated	25	PD-L1 positive (expression in stroma or ≥1% tumour cells)	12%
JAVELIN ³⁹	1b	Avelumab	Nil	Unselected; pre-treated	168	Unselected	5.4%

Early disease

Study	Phase	Checkpoint inhibitor	Chemotherapy	•	No. of patients	pCR (ypT0/is and ypN0)
I-SPY 2 ⁴³	2	Pembrolizumab	Paclitaxel or paclitaxel/pembro followed by doxorubicin/cyclophosphamide	TNBC; HR+/HER2-; PD-L1 unselected; tumour size > 2.5 cm; mammaprint high risk (nodal involvement in 37.7% pembro, 43.9% control)	69 pembro, 180 control	TNBC: 60% pembro vs. 20% control ^a HR+/HER2-: 34% pembro vs. 13% control ^a
KEYNOTE- 173 ⁴¹	1b	Pembrolizumab	A: pembro followed by pembro + nab-paclitaxel followed by pembro + doxorubicin/ cyclophosphamide. B: pembro followed by pembro + nab-paclitaxel + carboplatin followed by pembro + doxorubicin/cyclophosphamide	(primary tumour stage ≥T2 in 90%, nodal	20	Cohort A, 60%; Cohort B, 90%
Pusztai et al. ⁴²	1	MEDI4736	$\label{eq:median} \begin{tabular}{ll} MEDI4736 + nab-paclitaxel followed by dose dense \\ doxorubicin/cyclophosphamide \\ \end{tabular}$	TNBC; PD-L1 unselected; stage I-III (primary tumour stage ≥T2 in 57%, nodal involvement in 57%)	7	71.4%

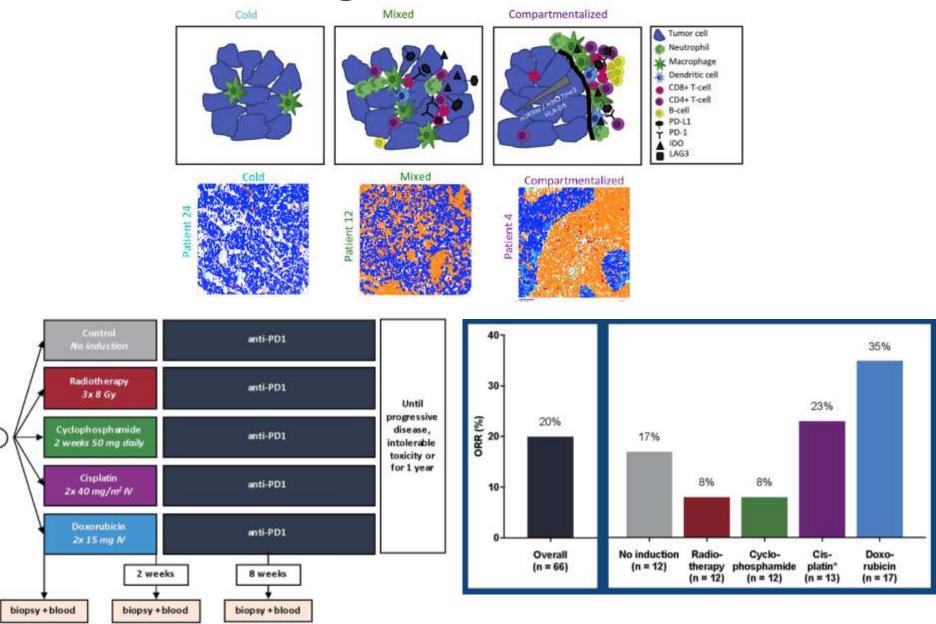
Therapeutic Implications: Ongoing Trials

	Indication	Phase	Design
NCT02513472	Metastatic TNBC, (first-line to third-line)	Phase 1b/2	Eribulin plus pembrolizumab (single-arm study)
TONIC (NCT02499367)	Metastatic TNBC (second-line to fourth-line)	Phase 2	Nivolumab alone vs nivolumab plus doxorubicin vs nivolumab plus cyclophosphamide vs nivolumab plus radiation vs nivolumab plus cisplatin (five arms, open-label trial)
KEYNOTE-086 (NCT02447003)	Metastatic TNBC (all lines)	Phase 2	Pembrolizumab (single-arm study)
KEYNOTE-355 (NCT02819518)			
Part 1	Locally recurrent inoperable or metastatic TNBC (first-line)	Phase 3	Pembrolizumab plus nab-paclitaxel vs pembrolizumab plus paclitaxel vs pembrolizumab plus gemcitabine and carboplatin
Part 2	Locally recurrent inoperable or metastatic TNBC (first-line)	Phase 3	Pembrolizumab plus chemotherapy vs pembrolizumab plus placebo
KEYNOTE-119 (NCT02555657)	Metastatic TNBC (second-line or third-line)	Phase 3	Pembrolizumab vs physician's choice (capecitabine, eribulin, gemcitabine, or vinorelbine)
IMpassion130 (NCT02425891)	Metastatic TNBC (first-line)	Phase 3	Nab-paclitaxel plus atezolizumab vs nab-paclitaxel plus placebo
NCT02489448	Early TNBC (neoadjuvant)	Phase 1/2	MEDI4736 plus weekly nab-paclitaxel followed by dose-dense doxorubicin and cyclophosphamide (single-arm study)
NCT02530489	Early TNBC (neoadjuvant)	Phase 2	Atezolizumab plus nab-paclitaxel
NeoTRIPaPDL1 (NCT02620280)	Early TNBC (neoadjuvant)	Phase 3	Carboplatin plus nab-paclitaxel plus atezolizumab vs carboplatin plus nab-paclitaxel (open-label study)
GeparNuevo (NCT02685059)	Early TNBC (neoadjuvant)	Phase 2	Epirubicin plus cyclophosphamide plus nab-paclitaxel plus durvalumab (MEDI4736) vs epirubicin plus cyclophosphamide plus nab-paclitaxel plus placebo

Media Release

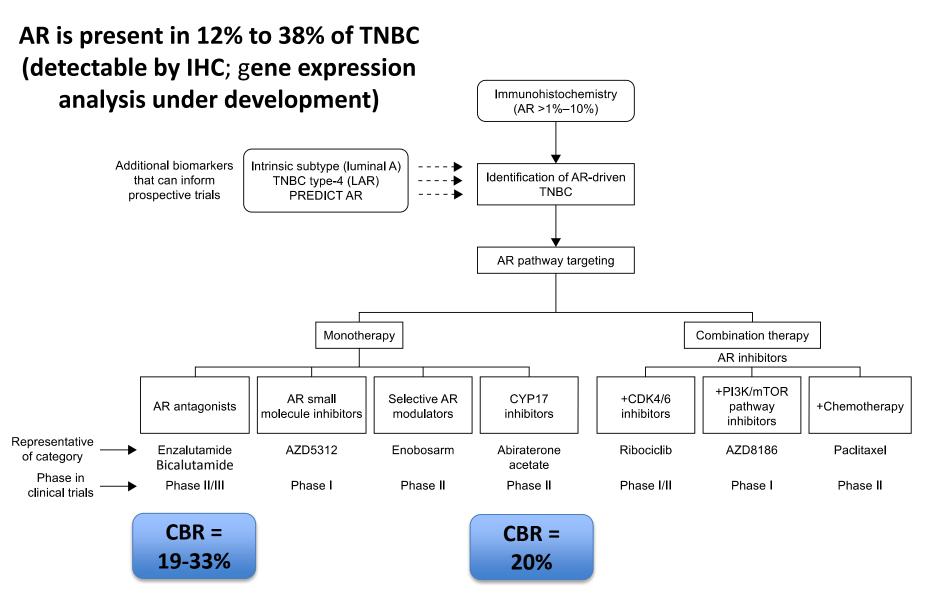
Basel, 02 July 2018

Phase III IMpassion130 study showed Roche's Tecentriq plus Abraxane significantly reduced the risk of disease worsening or death in people with metastatic triple negative breast cancer


> IMPASSION 130 NCT02425891

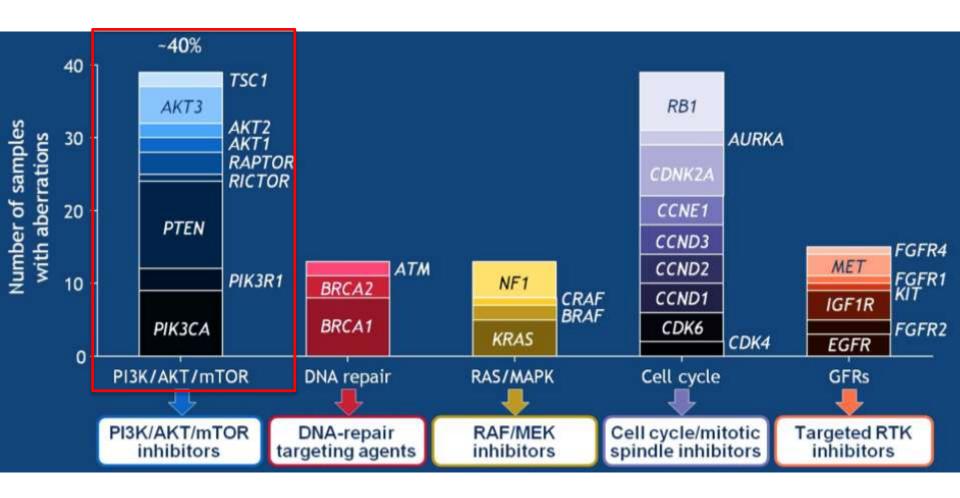
TNBC 1L

Nab-Paclitaxel + Atezolizumab


Nab-Paclitaxel + placebo

Modulating the Immune-Infiltrate

- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions


Androgen Receptors

Gucalp A et al, Cancer Res 2013; 19:5505-12. Bonnefoi H et al, Ann Oncol 2016;27:812-8 Mina A et al, Onco Targets Ther 2017;10:4675-85. Traina TA et al, J Clin Oncol 2018;36(9):884-90

- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions

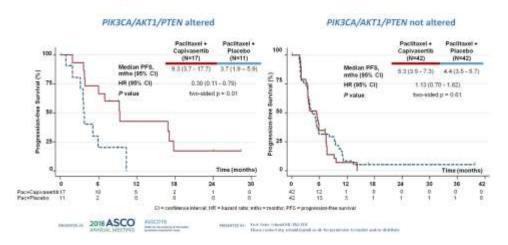
Other Potential Targets: Genomic Aberrations

Other Potential Targets: Genomic Aberrations

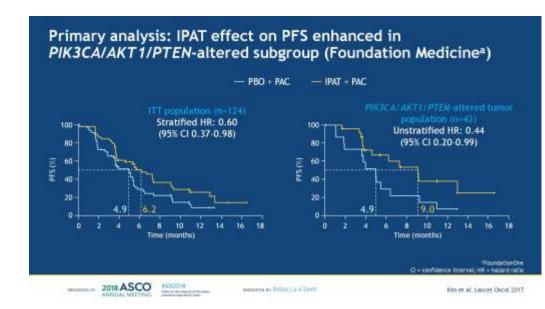
AZD5363 plus Paclitaxel versus Placebo plus Paclitaxel as firstline therapy for metastatic triple-negative breast cancer (PAKT): A randomised, double-blind, placebo-controlled, phase II trial.

Peter Schmid!, Jacinta Abraham², Stephen Chan³, Duncan Wheatley⁴, Adrian Murray Brunt⁵, Gia Nemsadze⁶, Richard Bard⁷, Yeon Hee Park⁴, Peter Hall⁶, Timothy Perren¹⁰, Rob Stein¹¹, Mangel László¹², Jean-Marc Ferrero¹⁰, Melissa Phillips¹⁴, John Conibear¹⁴, Javier Cortes¹⁵, Shah-Jalal Sarker¹, Aaron Prendergast¹, Haykey Cartwright¹, Kelly Mousa¹, Nick Turner¹⁰

*Barts Cancer Institute: St Bartholomew's Hospital, Queen Mary University of London, UK, *Vetandre NHS Trust, UK, *Nottingham University Hospitals NHS Trust, UK, *Royal Comwal Hospitals NHS Trust, UK, *University Hospitals of North Midlands NHS Trust, UK, *Institute of Closical Conclosory, Georgia; "Cambridge University Hospitals NHS Foundation Trust, UK, *Sameung Medical Centre, Republic of Kores; *19-85 Lothian, UK, *Needs Teaching Hospitals NHS Trust, UK, *University College London Hospitals NHS Foundation Trust, UK, *Needs (Linkersity of Foce, Naringary, *Centre Anticone Locassinger, France; *Plants Health NHS Trust, UK, **Remon Y Cajal University Hospital, Spain, **Rey Mandon NHS Foundation Trust, UK, **Remon Y Cajal University Hospital, Spain, **Rey Mandon NHS Foundation Trust, UK, **Remon Y Cajal University Hospital, Spain, **Rey Mandon NHS Foundation Trust, UK, **Remon Y Cajal University Hospital, Spain, **Rey Mandon NHS Foundation Trust, UK, **Remon Y Cajal University Hospital, Spain, **Rey Mandon NHS Foundation Trust, UK, **Rey Mandon NHS Founda



PFS by tumour PIK3CA/AKT1/PTEN status

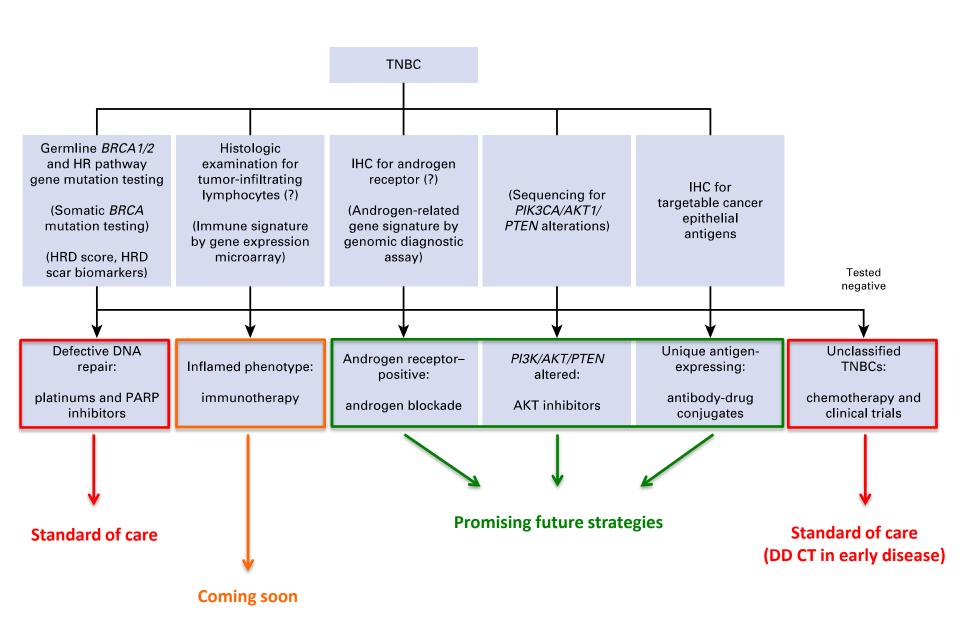


Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial

Sung-Bae Kim*, Rebecca Dent*, Seock-Ah Im, Marc Espié, Sibel Blau, Antoinette R Tan, Steven J Isakoff, Mafalda Oliveira, Cristina Saura, Matthew I Wonachenko, Amy V Kapp, Wai Y Chan. Stina M Singel, Daniel I Maslyar, José Baselga, on behalf of the LOTUS investigators?

Overall survival update of the double-blind placebo-controlled randomized phase 2 LOTUS trial of first-line ipatasertib + paclitaxel for locally advanced/metastatic triple-negative breast cancer

Montrollers, Sench Africa, Mari Eque. Size Black, Arabestre & Tark, Serves J Badell, Methods Chiefe, Craines Sours, Malthew Margelands, Array V Supp., Mar Y Chair, Stress Milangl, Daniel J Marigae, Jame Black, Care Black, Arabestre Maltham (Corner Personn) triples and Extent Chiefe Corner, Controllers and Arabestre Corner, Stress And Arabestre Corner, Marie Corner Breath, Arabestre Marie Controllers, Facility, May Joseph Sales Land, Recal Discour Centre, Arab, Arabestre Marie Marie Sales (Sales Arab, Massachastre Corner) Application, Marie Controllers, Scott Scott Barret.


Other Potential Targets: Epithelial Antigens

		Status of Drug Development			
Surface Antigen	Antibody-Drug Conjugate	Status	Trial Acronym	Trial No.	
Trop-2	Sacituzumab govitecan (IMMU-132)	Phase I/II trial reported ⁵¹		NCT01631552	
		Phase III trial recruiting; FDA breakthrough therapy and fast-track designation	ASCENT	NCT02574455	
Glycoprotein nonmetastatic B (gpNMB)	Glembatumumab vedotin (CDX-011)	Phase I/II trial reported ^{51a}		NCT00704158	
		Phase II trial reported ⁵²	EMERGE	NCT01156753	
		Phase IIb trial active, not recruiting	METRIC	NCT01997333	
LIV-1	Ladiratuzumab vedotin (SGN-LIV1A)	Interim results of phase I trial reported		NCT01969643	
		Phase Ib/2 trial in combination with pembrolizumab planned		NCT03310957	
Mesothelin	Anetumab ravtansine (BAY94-9343)	Phase I trial (MTD) reported		NCT01439152	
		Phase Ib multi-indication trial including TNBC recruiting		NCT03102320	
Carbonic anhydrase 6 (CA6)	SAR566658	Phase I trial (MTD) reported		NCT01156870	
		Phase II trial recruiting		NCT02984683	
Protein tyrosine kinase 7 (PTK7)	PF-06647020	Interim results of phase I trial reported		NCT02222922	
		Phase I trial in combination with gedatolisib planned		NCT03243331	

Chan JJ et al, J Oncol Pract 2018;14(5):281-9

- Introduction
- Main biological features with clinical relevance
 - 1. High cell proliferation
 - 2. BRCAness/HRD/genomic scars
 - 3. Increased immune-infiltrate
 - 4. Androgen receptors
 - 5. Other potential targets
- Conclusions

Conclusions

