
Immunoterapia e tumori TN

Dr. Andrea Milani

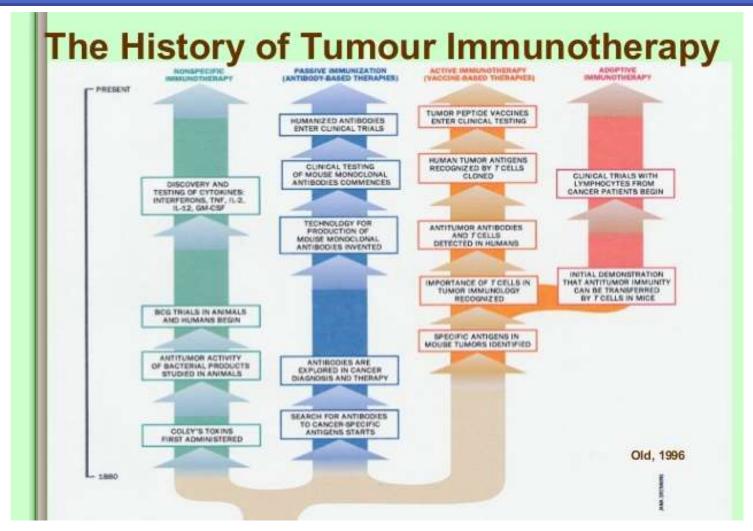
Unit of Investigative Clinical Oncology (INCO)
Fondazione del Piemonte per l'Oncologia
Candiolo Cancer Institute (IRCCs)

Disclosures (last two years)

- Speaker's Honoraria from
 - **Eisai**
 - AstraZeneca
 - ➤ Pierre Fabre
 - ➤ Novartis

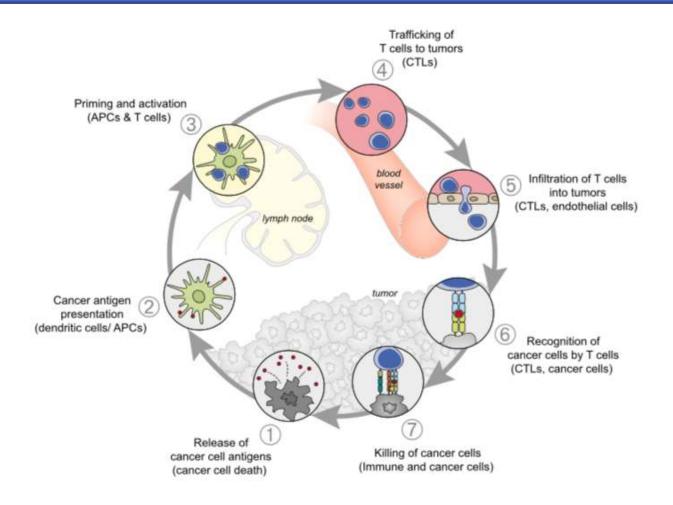
Outline

Introduction: what's immunotherapy?

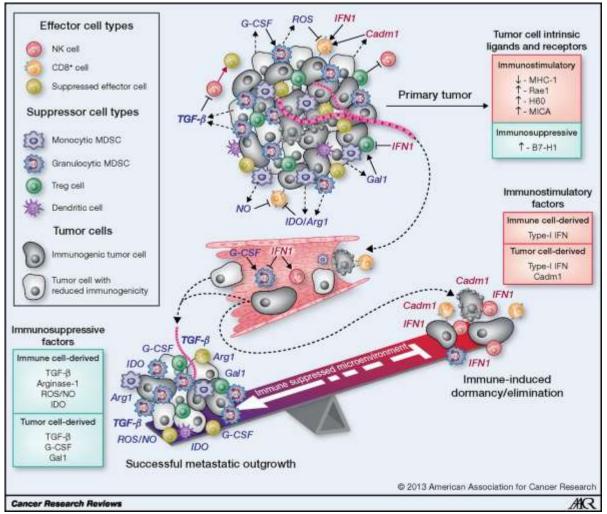

Breast cancer and TILS

Data from clinical trials

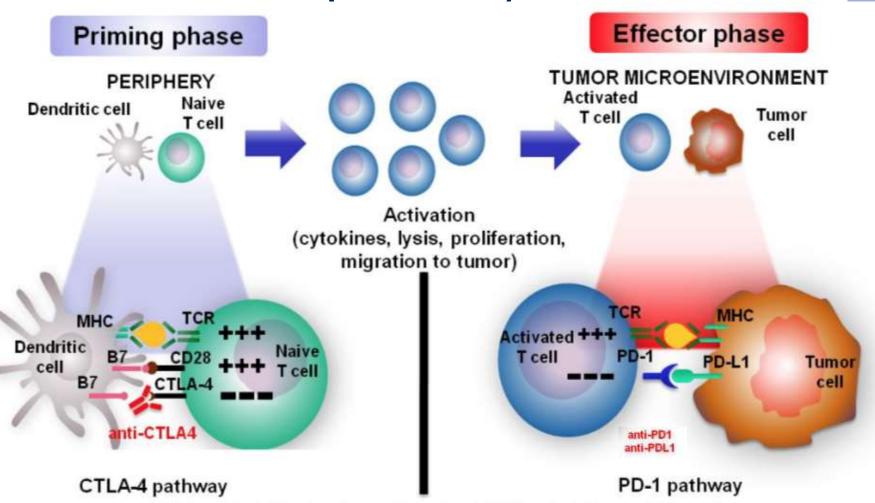
Future directions: how, when and what



Immunotherapy in cancer



The cancer immunity cycle



The immunosurveillance and immunoediting balance

Targeting CTLA-4 and PD1 pathways

CTLA-4 = cytotoxic T-lymphocyte-associated antigen 4; MHC = major histocompatibility complex; PD-1 = programmed death-1; PD-L1 = programmed death ligand 1; TCR = T-cell receptor

Goals of cancer immunotherapy

The NEW ENGLAND JOURNAL of MEDICINE

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Pembrolizumab versus Ipilimumab in Advanced Melanoma

Caroline Robert, M.D., Ph.D., Jacob Schachter, M.D., Georgina V. Long, M.D., Ph.D., Ana Arance, M.D., Ph.D., Jean Jacques Grob, M.D., Ph.D., Laurent Mortier, M.D., Ph.D., Adil Daud, M.D., Matteo S. Carlino, M.B., B.S., Catriona McNeil, M.D., Ph.D., Michal Lotem, M.D., James Larkin, M.D., Ph.D., Paul Lorigan, M.D., Bart Neyns, M.D., Ph.D., Christian U. Blank, M.D., Ph.D., Omid Hamid, M.D., Christine Mateus, M.D., Ronnie Shapira-Frommer, M.D., Michele Kosh, R.N., B.S.N., Honghong Zhou, Ph.D., Nageatte Ibrahim, M.D., Scot Ebbinghaus, M.D., and Antoni Ribas, M.D., Ph.D., for the KEYNOTE-006 investigators*

ORIGINAL ARTICLE

Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer

H. Borghaei, L. Paz-Ares, L. Horn, D.R. Spigel, M. Steins, N.E. Ready, L.Q. Chow,
E.E. Vokes, E. Felip, E. Holgado, F. Barlesi, M. Kohlhäufl, O. Arrieta, M.A. Burgio,
J. Fayette, H. Lena, E. Poddubskaya, D.E. Gerber, S.N. Gettinger, C.M. Rudin,
N. Rizvi, L. Crinò, G.R. Blumenschein, Jr., S.J. Antonia, C. Dorange,
C.T. Harbison, F. Graf Finckenstein, and J.R. Brahmer

The NEW ENGLAND JOURNAL of MEDICINE

RETAKLISHED DE 1812

MARCH 16, 2017

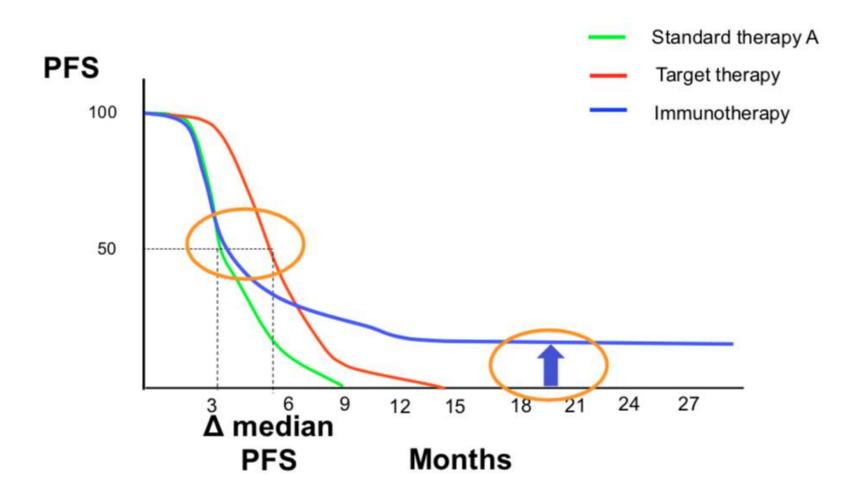
90L-376 HO.11

Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma

Bellmunt, R. de Wit, D.J. Vaughn, Y. Fradet, J.-L. Lee, L. Fong, N.J. Vogelzang, M.A. Climent, D.P. Petrylak,
 T.K. Chouein, A. Necchi, W. Gernitsen, H. Gurney, D.I. Quinn, S. Culine, C.N. Stemberg, Y. Mai, C.H. Poehlein,
 R.F. Perini, and D.F. Bajorin, for the KEYNOTE-045 Investigators*

VOLUME 38 - NUMBER 8 - MARCH 10, 2018

JOURNAL OF CLINICAL ONCOLOGY


ORIGINAL REPORT

Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair–Deficient/Microsatellite Instability–High Metastatic Colorectal Cancer

Michael J. Overman, Sara Lonardi, Ka Yisong Mark Wong, Heinz-Josef Leuz, Eubis Geltomino, Maximo Aglietta, Michael A. Moesa, Eric Von Cottore, Ray McDermett, Andrew Hill, Michael B. Sunyer, Alain Hondlag, Barr Neyro, Magali Sweek, Rebecca A. Mon, Jean-Manie Ledeine, Z. Alexander Cao, Shiral Kamble, Scott Kopera, and Thierry André

Can we cure cancer with immunotherapy?

Mutational Load of Human Cancers

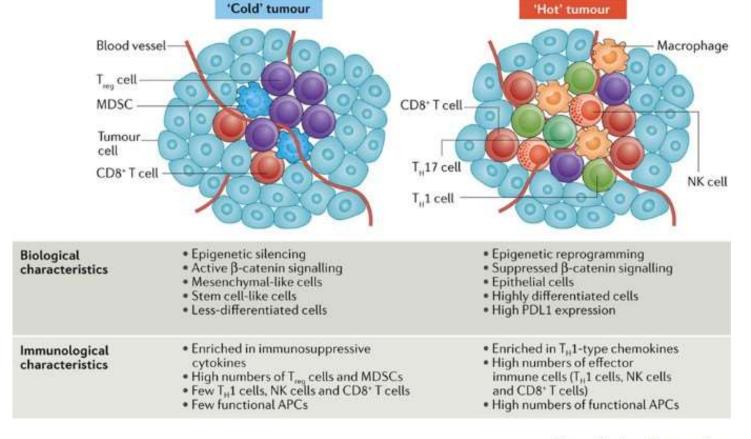


Figure 1 | The prevalence of somatic mutations across human cancer types. Every dot represents a sample whereas the red horizontal lines are the median numbers of mutations in the respective cancer types. The vertical axis (log scaled) shows the number of mutations per megabase whereas the different

cancer types are ordered on the horizontal axis based on their median numbers of somatic mutations. We thank G. Getz and colleagues for the design of this figure²⁶. ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia.

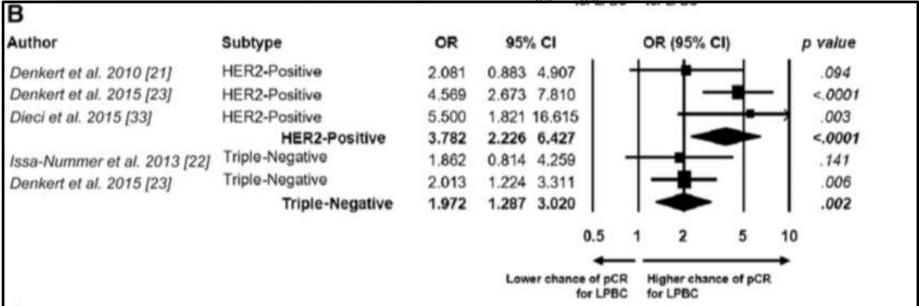
Cold and Hot Tumours

Nature Reviews | Immunology

TILs in Early Breast Cancer

Table 2. Characteristics of adjuvant randomized trials evaluating tumor-infiltrating lymphocytes in stromal compartments as continuous variable per 10% increase according to disease subtype

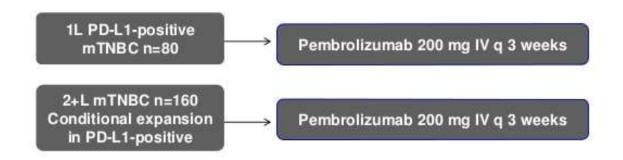
Author	HR	95%	6 CI	н	IR (95% CI)	p value
Loi et al. 2014 [17]	0.990	0.736	1.332	_		.947
Dieci et al. 2015 [34]	1.010	0.889	1.148		-	.879
Loi et al. 2013 [18]	1.100	0.995	1.215		⊢= -	.061
ER-Positive/HER2-Negative	1.060	0.982	1.144		•	.134
Dieci et al. 2015 [34]	0.880	0.763	1.014	_	■	.078
Loi et al. 2013 [18]	0.890	0.775	1.022	_	■ 	.099
Loi et al. 2014 [17]	0.980	0.809	1.188	_	—	.837
HER2-Positive	0.904	0.828	0.988	-	•	.025
Loi et al. 2014 [17]	0.800	0.621	1.031			.085
Adams et al. 2014 [16]	0.810	0.690	0.950	-	-	.010
Loi et al. 2013 [18]	0.820	0.700	0.960	-		.014
Dieci et al. 2015 [34]	0.890	0.778	1.018	_	■ 	.089
Triple-Negative	0.840	0.775	0.912	•	▶	<.000
			0.5		1	2
				Better OS	Worse	os


cyclophospnamide, methotrexate, and s-nuorouracii; C i, chemotherapy; D, docetaxel; FAC, s-nuorouracii, doxorubicin, and cyclophosphamide; FinHER, Finland Herceptin; H&E, hematoxylin and eosin staining; HER2-pos, HER2-positive breast cancer; HR, hazard ratio; iTILs, intratumoral-infiltrating lymphocytes; LPBC, lymphocyte-predominant breast cancer (defined as ≥60% infiltration of stromal or intratumoral lymphocytes); NR, not reported; OS, overall survival; P, paclitaxel; sTILs, stromal tumor-infiltrating lymphocytes; TN, triple-negative breast cancer; TR, trastuzumab; V, vinorelbine.

TILs in Early Breast Cancer

Table 1. Characteristics of neoadjuvant randomized trials evaluating tumor-infiltrating lymphocytes, including lymphocyte-predominant breast cancer assay, according to disease subtype

Author, Year [Reference]	Study	Disease subtype	Patients (n)	Treatment arms	TIL assay	TIL cutoff value	pCR definition	pCR in LPBC (%)	pCR in non-LPBC (%)
Denkert et al.,	GeparTrio	HER2-neg	442	TAC ×6 vs.	sTILs, iTILs	Noninfiltrate,	урТ0	48.1	12.6
2010 [21]	1070	HER2-pos	254	TAC $\times 8$ vs.	in H&E,	partial	ypN0	31.0	17.8


+ L vs. sTILs and iTILs
P + TR + continuous
L→FEC + variable
TR + L

Abbreviations: Beva, bevacizumab; CA, carboplatin; EC, epirubicin and cyclophosphamide; EVE, everolimus; FEC: 5-fluorouracil, epirubicin, and cyclophosphamide; H&E, hematoxylin and eosin staining; HER2-neg, HER2-negative breast cancer; HER2-pos, HER2-positive breast cancer; IHC, immunohistochemistry; iTILs, intratumoral-infiltrating lymphocytes; L, lapatinib; LPBC, lymphocyte-predominant breast cancer (defined as ≥60% infiltration of stromal or intratumoral lymphocytes); nplA, nonpegylated lyposomal doxorubicin; P, paclitaxel; pCR, pathological complete response; sTILs, stromal tumor-infiltrating lymphocytes; T, docetaxel; TAC, docetaxel, doxorubicin, and cyclophosphamide; TN, triple-negative breast cancer; TR, trastuzumab; VCAp, vinorelbine and capecitabine.

Pembrolizumab in TNBC: Keynote-086

KEYNOTE-086: Pembrolizumab Monotherapy for Metastatic TNBC

- · Primary Endpoint:
 - ORR (RECIST 1.1) in first line PD-L1+BC
 - ORR (RECIST 1.1) in 2+ line BC
 - Safety, tolerability
- Secondary Endpoints:
 - PFS, DOR, OS

Adams, et al., TIP, SABCS 2015

Pembrolizumab in TNBC: Keynote-086

ORR, n (%) [95% CI]

DCR,bn (%) [95% CI]

Best Overall Response, n (%)

Complete response

Partial response

Stable disease

Progressive disease

Not evaluable.

Not able to be assessed,d n (%)

Cohort B (1° Line) (n=84 PD-L1+)

ORR 23%

CR 4%

PR 19%

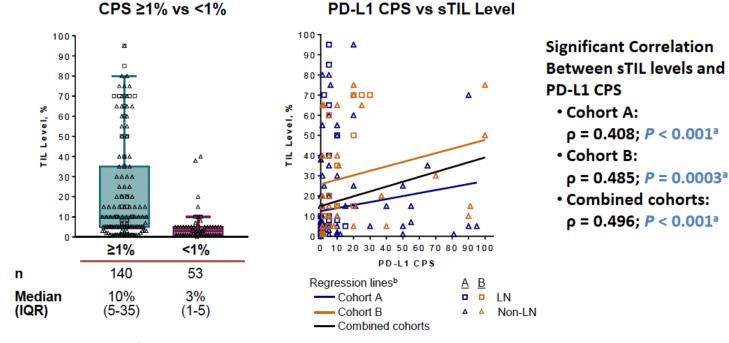
SD 17%

PD 58%

Adams, ASCO 2017

Keynote-086; sTIL levels correlate with tumor response

	Univariat	te ^a	Multivariate		
	Odds Ratio (95% CI)	P b	Odds Ratio (95% CI)	P ª	
sTIL level (continuous)	1.029 (1.012-1.046)	<0.001	1.0212 (1.002-1.041)	0.014	
Cohort (B vs A)	6.075 (2.358-16.465)	<0.001	4.191 (1.407-13.005)	0.005	
LDH concentration (continuous)	0.683 (0.477-0.896)	0.009	0.688 (0.468-0.924)	0.015	

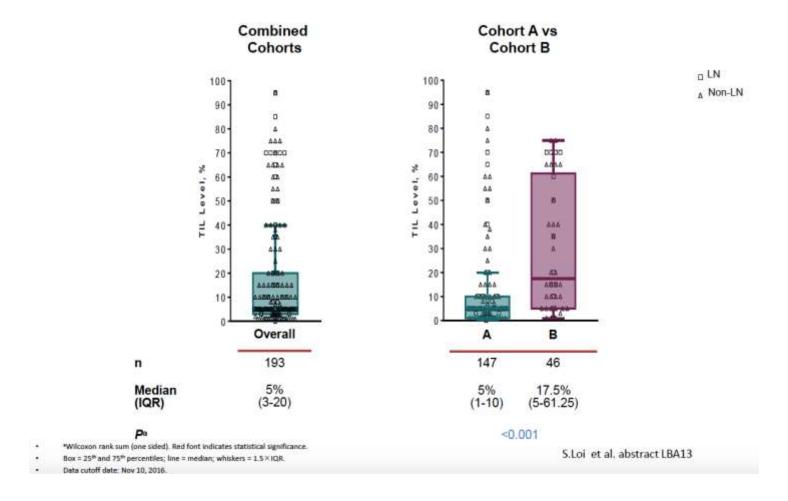

Data cutoff date: Nov 10, 2016.

^{*}Visceral disease (yes vs no) and ECOG performance status (0 vs 1) were evaluated and found to be nonsignificant based on the likelihood ratio test.

bOne-sided from logistic regression. Red font indicates statistical significance.

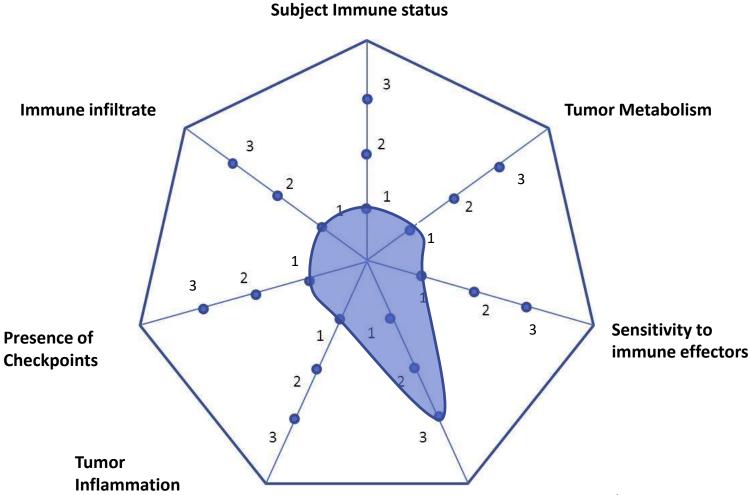
Keynote-086: PD-L1 and sTIL levels are correlated

- ²Wilcoxon rank sum (one sided). ^bCohort A: r = 0.128, P = 0.0122; cohort B: r = 0.227, P = 0.1296; combined cohorts: r = 0.217, P = 0.002.
- In the left figure, Box = 25th and 75th percentiles; line = median; whiskers = 1.5 × IQR.
 Data cutoff date: Nov 10, 2016.

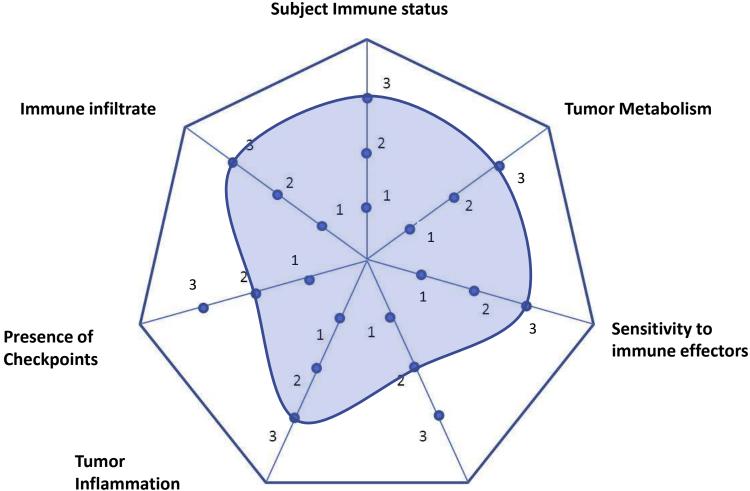

Immune checkpoint inhibitors seems to work better in earlier lines

							ORI	R	
Molecular subtype	Author	Drug	No. Pts	ORR	Selection	PDL1+§	PDL1-§	1L	2L+
	Nanda R	Pembrolizumab	27	18.5%	PDL1+				
	Adams S	Pembrolizumab	170	4.7%	All	4.8%	4.7%		4.7%
TNBC	Adams S	Pembrolizumab	52	23.1%	PDL1+			23.1%	
INDC	Emens L	Atezolizumab	21	19.0%	PDL1+				
	Schmid P	Atezolizumab	112	10.0%	All	13.0%	5.0%	26.0%	7.0%
	Dirix L	Avelumab	58	8.6%	All	44.0%	2.6%		
ER+/HER2-	Hugo R	Pembrolizumab	25	12.0%	PDL1+				
LIC+/ITLINZ-	Dirix L	Avelumab	72	2.8%	All				
HER2+	Dirix L	Avelumab	24	3.8%	All				

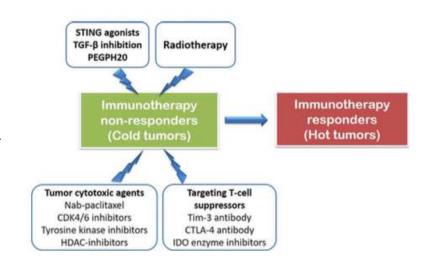
[§] PDL1+ and PDL1- were defined differently in different studies


Keynote-086; sTILS levels tend to decrease during the natural history of breast cancer

Investigative Clinical Oncology


Immunogram; late stage disease

Tumor Neoantigens


Immunogram; earlier stage disease

Combinatorial strategies

- Novel Vaccines
- Oncolytic Virus
- Co-Stimulatory Molecules
- Targeted Therapy
- Radiation
- Chemotherapy
- Adoptive Cell Therapy

Atezolizumab and Nab-Paclitaxel in metastatic TNBC

Best Overall Response	1L (n = 9)	2L (n = 8)	3L+ (n = 7)	All Patients N = 24
Confirmed ORR (95% CI) ^a	66.7% (29.9, 92.5)	25% (3.2, 65.1)	28.6% (3.7, 71.0)	41.7% (22.1, 63.4)
ORR (95% CI) ^b	88.9% (51.7, 99.7)	75.0% (34.9, 96.8)	42.9% (9.9, 81.6)	70.8% (48.9, 87.4)
CR	11.1%	0	0	4.2%
PR	77.8%	75.0%	42.9%	66.7%
SD	11.1%	25.0%	28.6%	20.8%
PD	0	0	28.6%	8.3%

Response rates were higher for patients who received atezolizumab/nab-paclitaxel treatment as 1L therapy compared to 2L+

Efficacy-evaluable patients were dosed by June 1, 2015, and were evaluable for response by RECIST v1.1. Minimum efficacy follow up was ≥ 3 months.

Adams S, et al. SABCS. 2015 [abstract 850477].

^a Confirmed ORR defined as at least 2 consecutive assessments of complete or partial response.

^b Including investigator-assessed unconfirmed responses.

IMpassion130 study design

Atezo + nab-P arm: Key IMpassion130 eligibility criteria^a: Atezolizumab 840 mg IV Metastatic or inoperable locally advanced TNBC - On days 1 and 15 of 28-day cycle Histologically documented^b + nab-paclitaxel 100 mg/m2 IV · No prior therapy for advanced TNBC - On days 1, 8 and 15 of 28-day cycle - Prior chemo in the curative setting, including RECIST v1.1 taxanes, allowed if TFI ≥ 12 mo Double blind: no crossover permitted PD or toxicity ECOG PS 0-1 Plac + nab-P arm: Stratification factors: Placebo IV · Prior taxane use (yes vs no) On days 1 and 15 of 28-day cycle · Liver metastases (yes vs no) + nab-paclitaxel 100 mg/m² IV PD-L1 status on IC (positive [≥ 1%] vs negative [< 1%])o On days 1, 8 and 15 of 28-day cycle

Co-primary endpoints were PFS and OS in the ITT and PD-L1+ populations^d

IC, tumour-infiltrating immune cell; TFI, treatment-free interval. a Clinical Trials.gov; NCT02425891. b Locally evaluated per ASCO-College of American Pathologists

Key secondary efficacy endpoints (ORR and DOR) and safety were also evaluated

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

IMpassion130 baseline characteristics

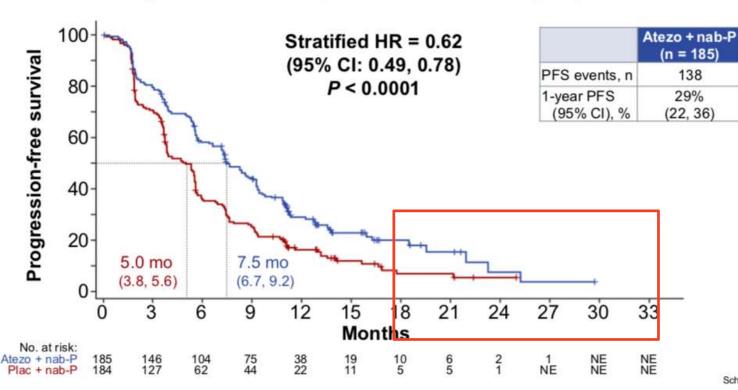
Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)
Median age (range), y	55 (20-82)	56 (26-86)
Female, n (%)	448 (99%)	450 (100%)
Race, n (%) ^a		
White	308 (68%)	301 (67%)
Asian	85 (19%)	76 (17%)
Black/African American	26 (6%)	33 (7%)
Other/multiple	20 (4%)	26 (6%)
ECOG PS, n (%)b,c		
0	256 (57%)	270 (60%)
1	193 (43%)	179 (40%)
Prior (neo)adjuvant treatment, n (%)	284 (63%)	286 (63%)
Prior taxane	231 (51%)	230 (51%)
Prior anthracycline	243 (54%)	242 (54%)

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)
Metastatic disease, n (%)	404 (90%)	408 (91%)
No. of sites, n (%)d		
0-3	332 (74%)	341 (76%)
≥4	118 (26%)	108 (24%)
Site of metastatic disease	, n (%)	
Lung	226 (50%)	242 (54%)
Bone	145 (32%)	141 (31%)
Liver	126 (28%)	118 (26%)
Brain	30 (7%)	31 (7%)
Lymph node only ^d	33 (7%)	23 (5%)
PD-L1+ (IC), n (%)	185 (41%)	184 (41%)

Data cutoff: 17 April 2018. ^a Race was unknown in 12 patients in the Atezo + nab-P arm and 15 in the Plac + nab-P arm. ^b Of n = 450 in each arm. ^c ECOG PS before start of treatment was 2 in 1 patient per arm. ^d Of n = 450 in the Atezo + nab-P arm and n = 449 in the Plac + nab-P arm arm.

Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

Plac + nab-P

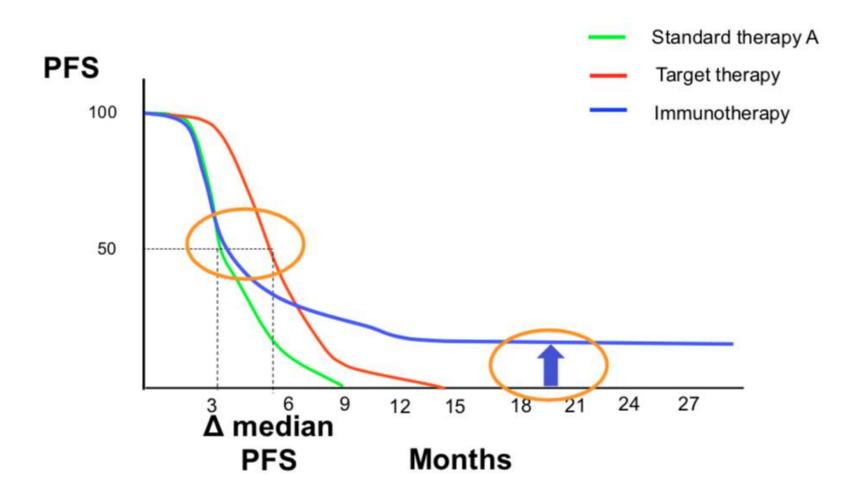

(n = 184)

157

16%

(11, 22)

Primary PFS analysis: PD-L1+ population

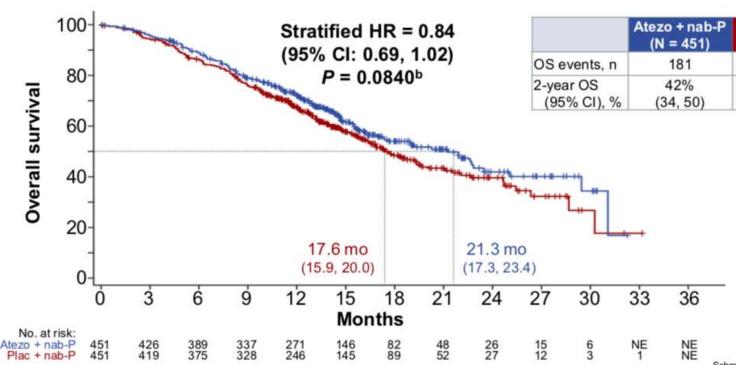


Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

Data cutoff: 17 April 2018.

Can we cure cancer with immunotherapy?

Plac + nab-P

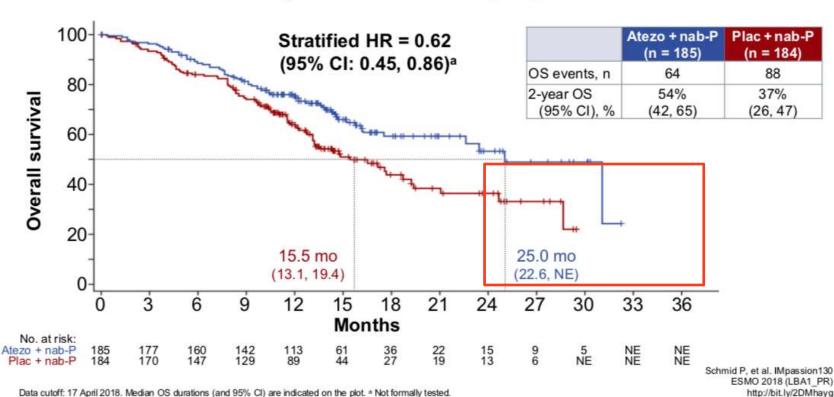

(N = 451)

208

40%

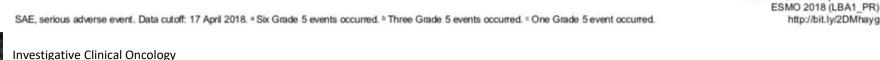
(33, 46)

Interim OS analysis: ITT population^a



Data cutoff: 17 April 2018. Median OS durations (and 95% CI) are indicated on the plot. Median follow-up (ITT): 12.9 months. ^aFor the interim OS analysis, 59% of events had occurred. ^b Significance boundary was not crossed. Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

Interim OS analysis: PD-L1+ population


Schmid P, et al. IMpassion130

Most common serious AEs

SAEs occurring in ≥ 1% of patients in either arm (regardless of attribution)

	Atezo - (n =	nab-P 452)	Plac + nab-P (n = 438)		
SAE, n (%)	Any Grade	Grade 3-4	Any Grade	Grade 3-4	
All	103 (23%)	78 (17%) ^a	80 (18%)	56 (13%)b	
Pneumonia	10 (2%)	8 (2%) ^c	5 (1%)	0	
Urinary tract infection	5 (1%)	2 (< 1%)	0	0	
Dyspnoea	5 (1%)	3 (1%)	2 (< 1%)	2 (< 1%)	
Pyrexia	5 (1%)	3 (1%)	3 (1%)	0	

- A higher proportion of patients in the Atezo + nab-P arm than in the Plac + nab-P arm reported SAEs (23% vs 18%)
- No SAE was reported with a \geq 2% difference between treatment arms

Tonic Trial

Adaptive phase II randomized non-comparative trial of nivolumab after induction treatment in triple negative breast cancer: TONIC-trial

Study objective To assess if short-term induction with radiation or chemotherapy modulates the anticancer immune response Radiation 3x8 Gy Key patient inclusion criteria Doxorubicin 15 mg x2 Metastatic triple-negative BC ≤3 lines of chemotherapy for Cyclophosphamide 50 mg/day metastatic disease LDH <2x ULN Cisplatin 40 mg/m² x2 Accessible lesion for biopsy WHO PS 0-1 Blopsy and No history of leptomeningeal nivolumab disease, no symptomatic 3 mg/kg q2w CNS disease until PD (n=50)* No treatment **ENDPOINTS** PFS (RECIST, iRECIST), ORR, clinical benefit, safety, OS, translational endpoints

Kok M, et al. Ann Oncol 2017;28(Suppl 5):Abstr LBA14

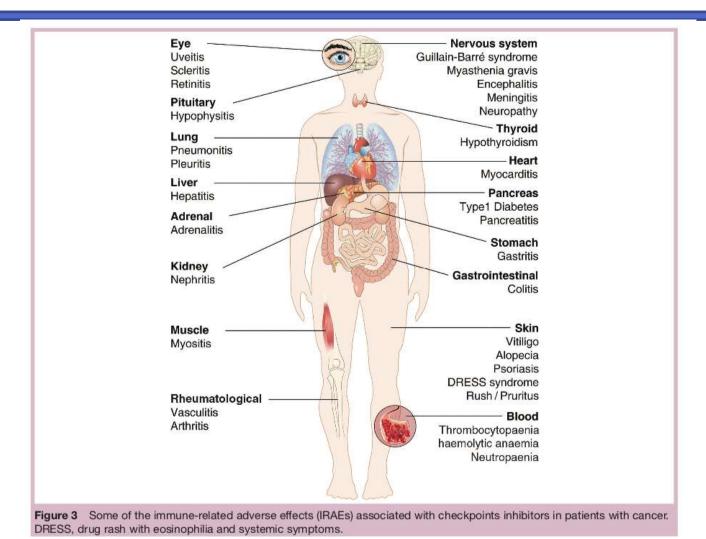
*Minimum sample of 10 allows early discontinuation if in

cohort ≤30% of the patients respond

Tonic Trial

The TONIC-trial: Main results

	Total (n=50)
Best ORR (CR + PR) iRECIST, %	24
Clinical benefit rate (CR + PR + SD)	26
CR	2
PR	22
SD ≥24 weeks	2
ORR RECIST v1.1, %	22
Median PFS, months (95%CI)	3.4 (2.5, 3.7)
Median time to response, months (range)	2.1 (0.5–3.5)
Median DoR, months (95%CI)	9 (5.5, NA)

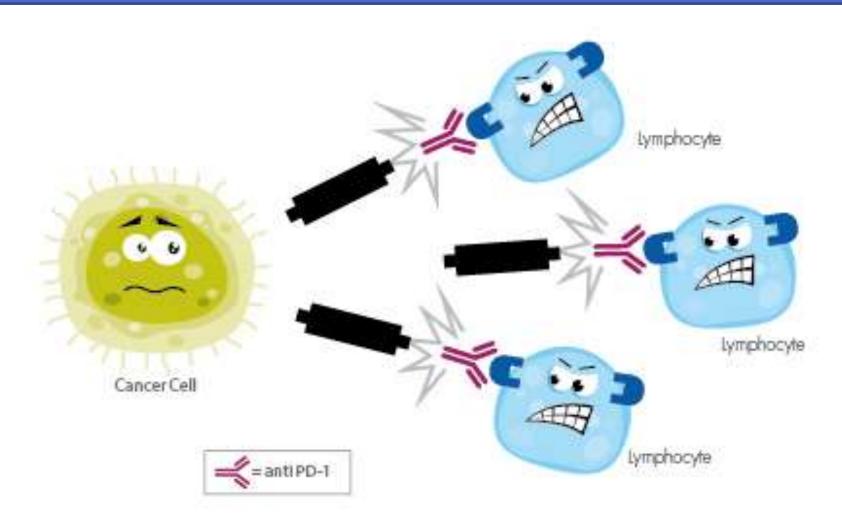

Treatment-related AEs	Any grade, n (%)	Grade 3, n	Grade 4, n
During nivolumab (n=53)	43 (81)	10	3
Nivolumab after RT (n=11)	9 (82)	3	0
Nivolumab after doxozubicin (n=11)	8 (73)	1	0
Nivolumab after cyclophosphamide (n=10)	9 (90)	2	3
Nivolumab after cisplatin (n=10)	9 (90)	2	0
Nivolumab only (n=11)	8 (73)	2	0

*Grade 4 AEs (n=3) were asymptomatic increases in amylase/lipase/yGT. Grade 5 AE (n=1) was death NOS

Kok M, et al. Ann Oncol 2017;28(Suppl 5):Abstr LBA14

New Therapies → New Toxicities

Main Ongoing Trials


Agents	Subtype	Phase	Trial Name	Trial ID
Neoadjuvant Pembrolizumab + chemotherapy → adjuvant pembrolizumab	Early TNBC	III	KEYNOTE-522	NCT03036488
Standard surgery, neo- or adjuvant chemotherapy, radiotherapy → adjuvant avelumab/observation	Early TNBC	III	A-BRAVE	NCT02926196
Atezolizumab + nab-paclitaxel + carboplatin → surgery + EC or CEF Paclitaxel + carboplatin	Early TNBC	III	Neo-TRIP	NCT02620280
Pembrolizumab Capecitabine/Eribulin/ gemcitabine/vinorelbine (physician choice)	Metastatic TNBC	III	KEYNOTE-119	NCT02555657
Induction treatment: radiation or doxorubicin (low dose) or CTX (low dose) or no treatment → Nivolumab	Metastatic TNBC	II	Tonic	NCT02499367
Atezolizumab + Gem-Carbo and Atezolizumab + Paclitaxel	Metastatic TNBC	III	Impassion 131 and 132	NCT02425891

Conclusions

- Immunotherapy represents an intringuing and potentially revolutionary approach in BC
- Immune Checkpoint Inhibitors are active and promising especially in TN subtype and in earlier lines of treatment
- Novel strategies and novel combinations to enhance activity and extend spectrum of efficacy of immunotherapy are needed and under investigation

Thank You

Backup slides

Pembrolizumab in HER2 positive mBC: Panacea Trial

Overall

50.5 (28-72) 33 (56.9%) 25 (43.1%) 58 (100%)

7 (12.1%) 51 (87.9%)

2017 SAN ANTONIO BREAST CANCER SYMPOSIUM

INTERNATIONALBREAST CANCER ST

lecember 5-9, 2017

Baseline Characteristics

Characteristic N (%)	Phase Ib PD-L1 positive; n=6	Phase II PD-L1 positive; n=40	Phase II PD- negative; n=
Age yrs. median (range)	49 (38-57)	49 (28-72)	56.5 (43-61)
ER negative positive (≥ 1%)	4 (66%) 2 (33%)	23 (57.5%) 17 (42.5%)	6 (50%) 6 (50%)
Prior trastuzumab-containing therapy	6 (100%)	40 (100%)	12 (100%)
Additional anti-HER2 therapy			
No	1 (16.7%)	6 (15%)	0 (0%)
Yes	5 (83.3%)	34 (85%)	12 (100%)
T-DM1	4	29	9
Pertuzumab	3	10	7.121
Other	1	17	P
Prior chemotherapy (Anth/Taxane)	6 (100%)	40 (100%)	D
Median time from Dx met disease to enrolment; months (range)	15.5 (6-83.6)	40.8 (1.1-	

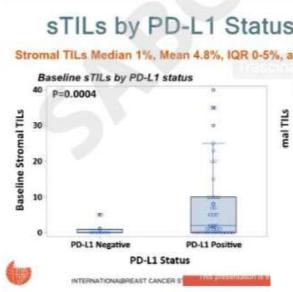
Best Overall Response (RECIST 1.1)

	PD-L1 Positive Phase lb, n=6	PD-L1 Positive Phase II, n=40
ORR n (%) [90%CI]	1 (17%) [1-58]	6 (15%) [7-29]
DCR1 n (%) [90%CI]	1 (17%) [1-58]	10 (25%) [14-49]
Best overall response, n (%)		
Complete Response	1 (17%)	1 (2.5%)
Partial Response	•	5 (12.5%)
Stable Disease		7 (17.5%)
Progressive Disease	5 (83%)	25 (62.5%)
Not Evaluable	•	2 (5.0%)

Overall PD-L1 + cohort

ORR 15.2% [7-27]

DCR 24% [14-36]


¹DCR: CR, PR, or SD ≥ 6 months

Pembrolizumab in HER2 positive mBC: Panacea Trial

017 SAN ANTONIO BREAST CANCER SYMPOSIUM

sTILs by PD-L1 Status and Site of Biopsy

Stromal TILs Median 1%, Mean 4.8%, IQR 0-5%, all <1 yr old biopsies from metastatic lesions

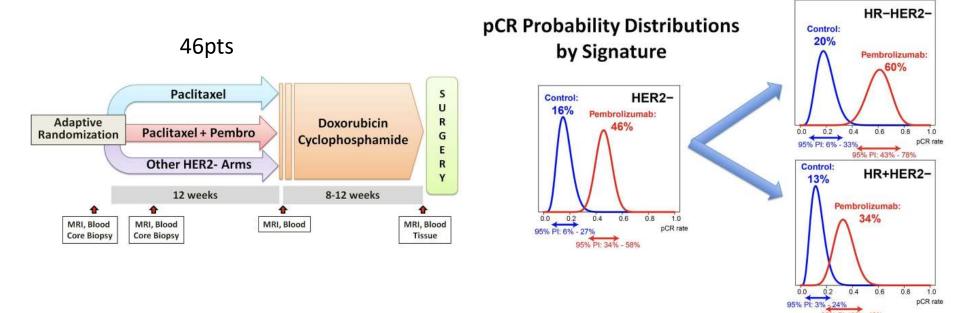
P=0.0003

30

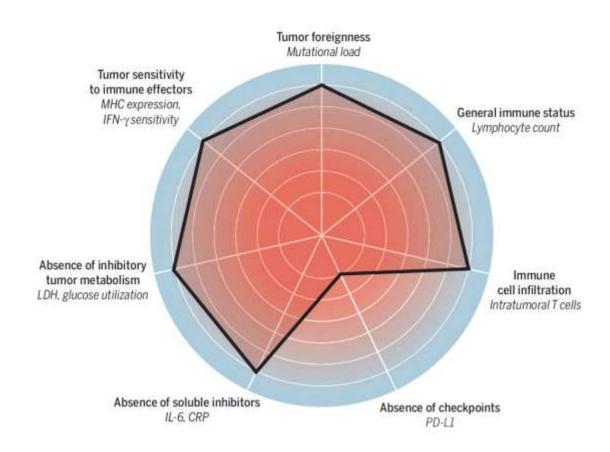
Baseline sTILs by site of biopsy

Summary and Conclusions

- PANACEA study of pembrolizumab with trastuzumab in trastuzumab-resistant mHER2+ patients met its primary endpoint in the PD-L1 positive cohort (ORR 15%, DCR 25%)
 - No responses observed in PD-L1 negative patients
 - Stromal TIL levels associated with responses: sTILs ≥ 5% patients (ORR 39%, DCR
 - For responders: combination offers durable control without chemotherapy
- · Metastatic HER2+ disease in the heavily pretreated setting is poorly immunogenic (majority of patients had low TILs in their metastatic lesions)
- · Future directions in IO in mHER2+ should focus on combinations with effective anti-HER2 therapy, especially in low TIL patients



INTERNATIONALBREAST CANCER S


Investigative Clinical Oncology

Neoadjuvant Pembrolizumab; the I-SPY 2 study

The cancer immunogram

