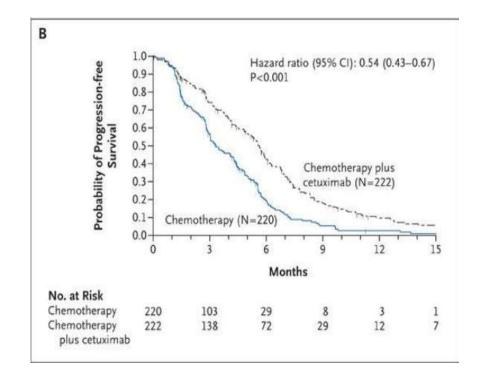


I TUMORI DEL TESTA COLLO: NUOVE PROSPETTIVE

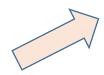

ANDREA BOTTICELLI

SAPIENZA UNIVERSITA' DI ROMA

Roma, 2.12.2019

DA DOVE PARTIAMO ...

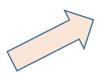
- Head and Neck cancers represent the **sixth most common type of cancer** worldwide, with a prevalence of 6% that translate into **650,000** new cases for year.
- The Head and Neck cancer annual specific mortality is 1-2% with 330,000 deaths occurred for year


OS: 10 MESI!!!

STARTING FROM OLD APPROACH

SELECTING BETTER PATIENTS

HOW TO INCREASE OUTCOME ???

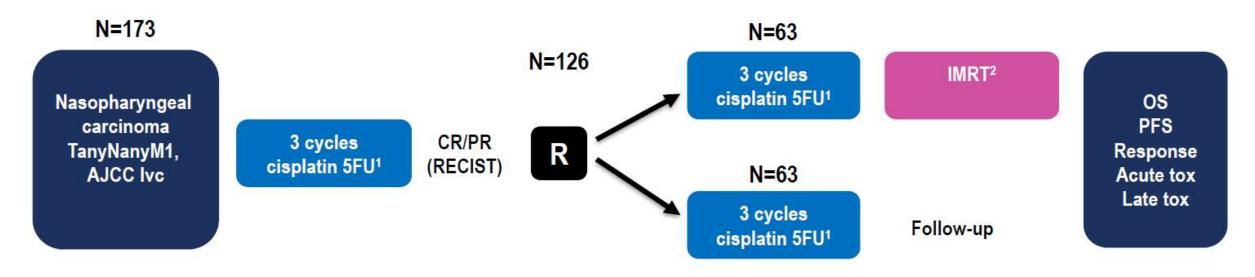

WITH NOVEL COMBINATIONS

WITH NOVEL TARGET

STARTING FROM OLD APPROACH

SELECTING PATIENTS
BETTER

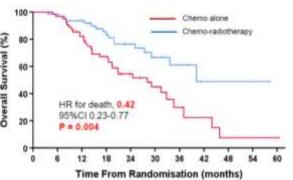
HOW TO INCREASE OUTCOME ???


WITH NOVEL COMBINATIONS

WITH NOVEL TARGET

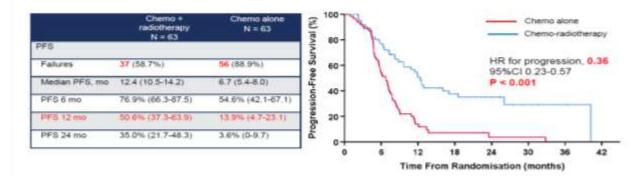
CHEMOTHERAPY COMBINED WITH RADIOTHERAPY VS CHEMOTHERAPY ALONE FOR DISTANT METASTATIC NASOPHARYNGEAL CARCINOMA (11080)

Prof. Ming-Yuan Chen, Principal Investigator (Sun Yat-sen University, Guangzhou/CHINA), R. You, L. You-Ping, P.Y. Huang, X. Zou, G.P. Shen, H.D. Zhang.

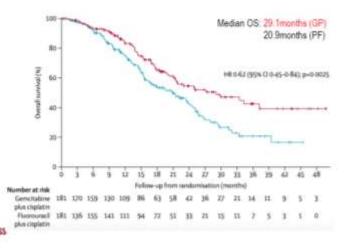


¹ cisplatin 100 mg/m², iv, day 1, fluorouracil 5 g/m² continuously iv 120 h ² 66-70 Gy in 28-33 fr on primary tumor, 60-66 Gy in 28-33 fr on lymph nodes

Closed at interim analysis


OVERALL SURVIVAL

	Chemo + radotherapy N = 63	Chemo alone N = 63	(3
Overall survival	A100-000		5
Deaths	17 (27.0%)	34 (54.0%)	viva
05 6 ma	98.4% (95.2-100.0)	96.8% (92.5-100.0)	Sur
OS 12 mo	93.6% (87.5-99.7)	81.9% (72.3-91.5)	E
OS 24 mo	76.4% (64.4-88.4)	54.5% (41.0-68.0)	ě


The date of last follow-up: August 2019, the median follow-up: 26.7 months.

PROGRESSION FREE SURVIVAL

The date of last follow-up: August 2019 the median follow-up: 26.7 months.

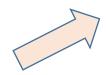
GEMCITABINE + CISPLATIN SUPERIOR TO CISPLATIN + 5FU

PFS 7 vs 5,6 months

CONCLUSIONS

- Radiotherapy to the primary tumor and LN added to chemotherapy significantly improves OS in chemotherapy-sensitive metastatic NPC patients.
- > This treatment paradigm represents the new standard of care

Remaining questions:


- · Can we safely replace 5FU by gemcitabine?
- Do all patients benefit or just the patients with low metastatic burden?
- Could patients with oligometastatic disease benefit from a more aggressive approach?

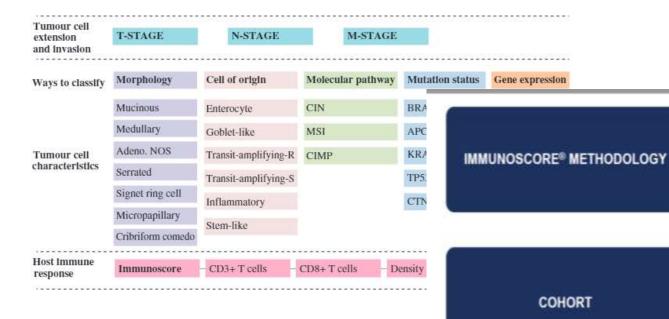
STARTING FROM OLD APPROACH

SELECTING BETTER PATIENTS

HOW TO INCREASE OUTCOME ???

WITH NOVEL COMBINATIONS

WITH NOVEL TARGET


PD1114

High Immunoscore[®] is associated with good response to neo-adjuvant chemotherapy and prolonged survival in advanced Head and Neck cancer patients

Haitham Mirghani, Clémence Mure, Bernhard Mlecnik, Fabienne Hermitte, Elise Martel, Odile Casiraghi, Mariana Iacob, Caroline Even, Jérôme Galon.

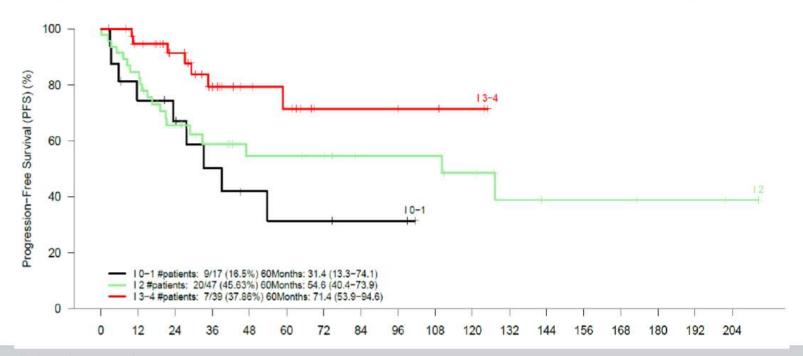
FROM CRC TO HN CANCER...

J Galon et al

- Digital method for the quantification of the densities of CD3+ and CD8+ T cells in the center of the tumour (CT) and the invasive margin (IM);
- Stratifies patients into 3 Immunoscore® categories (Low, Intermediate and High) and as a continuous variable
- Prognostic and predictive value of Immunoscore® validated in localized colon cancer

130 patients involved in the study (62 Hypopharynx, 68 Larynx):

- 110 patients with a valid Immunoscore® results (53 hypopharynx, 57 larynx).
- 103 patients with valid Immunoscore® results and complete clinical data (47 Hypopharynx, 56 larynx).
- 108 patients with valid Immunoscore® and response assessment data


IMMUNOSCORE®
DISTRIBUTION

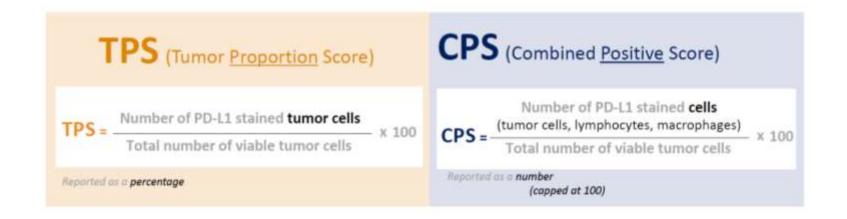
RARCELORA
CONGRESS

Immunoscore® distribution in the total cohort (N=110)

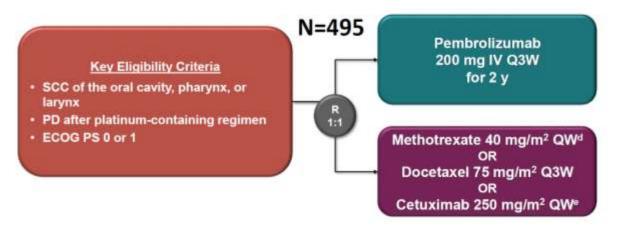
A High Immunoscore® is associated with better prognostic (5-year PFS)

In the global cohort (n=103), 5-years PFS rate was:

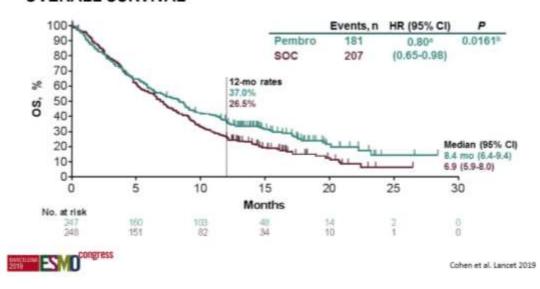
- 71.4% (CI 53.9-94.6) for IS high (3-4) patients
- 54.6%, CI 95% (40.4–73.9) for IS Intermediate (2) patients
- 31.4%, CI 95% (13.3–74.1) for IS Low (0-1) patients


High vs Low HR = 0.27 CI 95% (0.10-0.74), P corrected= 0.0214.

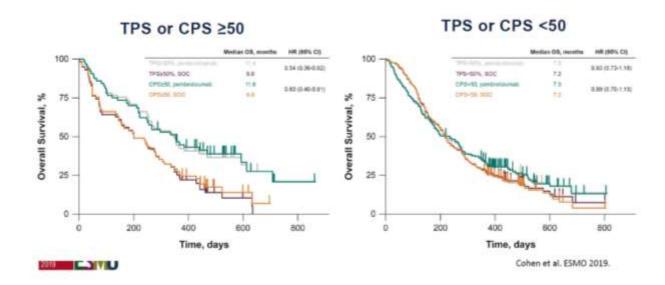
PD-L1: NEVERENDING STORY...



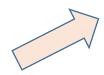
PD-L1 STAINING



KEYNOTE 040 STUDY DESIGN


OVERALL SURVIVAL

Cohen et al. Lancet 2019

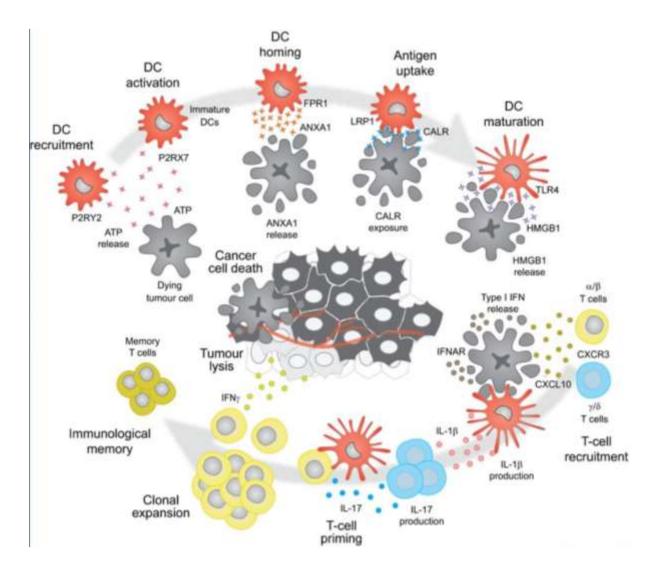

OVERALL SURVIVAL OF PATIENTS WITH SCORES ≥ 50 OR < 50

STARTING FROM OLD APPROACH

BETTER SELECTING PATIENTS

HOW TO INCREASE OUTCOME ???

WITH NOVEL COMBINATIONS

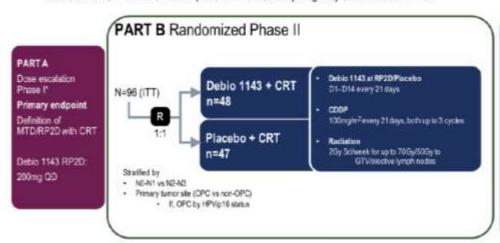

WITH NOVEL TARGET

Protocol-Specified Final Results of the KEYNOTE-048 Trial of Pembrolizumab as First-Line Therapy for Recurrent/ Metastatic Head and Neck Squamous Cell Carcinoma (R/M HNSCC)

Danny Rischin¹, Kevin Harrington,² Richard Greil,³ Denis Soulières,⁴ Makoto Tahara,⁵ Gilberto de Castro,⁶ Amanda Psyrri,⁷ Neus Basté,⁸ Prakash Neupane,⁹ Åse Bratland,¹⁰ Thorsten Fuereder,¹¹ Brett GM Hughes,¹² Ricard Mesia,¹³ Nuttapong Ngamphaiboon,¹⁴ Tamara Rordorf,¹⁵ Wan Zamaniah Wan Ishak,¹⁶ Yayan Zhang,¹⁷ Fan Jin,¹⁷ Burak Gumuscu,¹⁷ Barbara Burtness¹⁸

Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; "The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust National Institute of Health Research Biomedical Research Centre, London, UK; "Paracelsus Medical University, Salzburg Cancer Research Institute, and Cancer Cluster Salzburg, Salzburg, Austria; "Centre Hospitaller de l'Université de Montréal, Montréal, QC, Canada; "National Cancer Center Hospital East, Kashiwa, Japan; "Institute do Cancer de Estado de Sao Paulo, Sao Paulo, Brazil; "National Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece; "Vall d'Hebron University Hospital, Barcelona, Spain; "University of Kansas Medical Center, Kansas City, KS, USA; "Oslo University Hospital, Oslo, Norway; "Medical University of Vienna, Vienna, Austria; "Royal Brisbane and Women's Hospital and University of Queensland, Brisbane, QLD, Australia; "Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; "Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; "University Hospital, Zurich, Switzerland; "University Malaya, Kuala Lumpur, Malaysia; "Merok & Co., Inc., Kenilworth, NJ, USA; "Valie School of Medicine and Yale Cancer Center, New Haven, CT, USA

CHT + IMMUNO

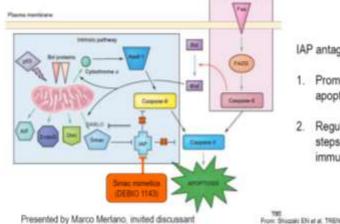


DOUBLE-BLIND RANDOMIZED PHASE II RESULTS COMPARING CONCURRENT HIGH-DOSE CISPLATIN CHEMORADIATION PLUS DEBIO 1143 OR PLACEBO IN HIGH-RISK PATIENTS WITH LOCALLY-ADVANCED SCCHN (LBA65)

Prof. Jean Bourhis, Principal Investigator (CHUV Lausanne - Suisse) on behalf of the GORTEC Investigators:

XS. Sun, Y. Pointreau, C. Sire, C. Le Tourneau, A. Coutte, MC, Kaminsky-Forret, M. Alfonsi, P. Boisselier, L. Martin, JP, Delord, F. Clatot, J. Miroir, F. Rolland, P. Crompton, S. Brienza, S. Szyldergemain, C. Even and Y. Tao.

Primary endpoint


 Locoregional control rate at 18 months after CRT (A>20% between arms with 0.8 power at 0.2 significance level)

Key secondary endpoints

- · PFS
- Duration of LRC
- Dvorali sunivali
- . OR and CR at 3 and 6 months after CRT completion

CHT + TARGET

TARGETING INHIBITOR OF APOPTOSIS PROTEINS (IAP): MECHANISM OF ACTION **Corner patress**

IAP antagonists:

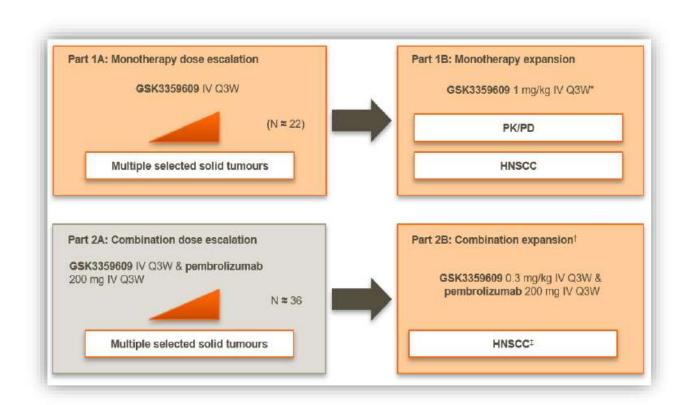
- Promote tumor cell apoptosis
- 2. Regulate multiple steps in antitumor immunity

From: Shippel EN et al. TRENC'S Slochern Slance 2004 - modified

PRIMARY ENDPOINT

LRC-rate at 18 months (as per investigator) - ITT

	Debio 1143 + CRT N=48	Placebo + CRT N=48	Debio 1143 vs. Placebo + CRT
Event-Free at 18 Months	26 (54.2%)	16 (33.3%)	
Event or Censored before 18 Months	22 (45.8%)	32 (66.7%)	
Events	9 (18.8%)	11 (22.9%)	
Censored	13 (27.1%)	21 (43.8%)	
Locoregional Control Rate (%) (95% CI)	54.2 (39.2 ; 68.6)	33.3 (20.4 ; 48.4)	Δ:20.8 (1.4; 40.2)
Odds Ratio (95% CI) (Debio 1143 vs. Placebo)			2.69 (1.13 ; 6.42)
p-value			0.026


Primary endpoint met: LRC-rate improve by >20% at 18 months after CRT

Safety with Debio 1143 was predictable and manageable without increases in life-threatening toxicities nor late toxicities

Inducible T-cell co-stimulatory (ICOS) receptor agonist, GSK3359609 alone and in combination with pembrolizumab: preliminary results from INDUCE-1 expansion cohorts in head and neck squamous cell carcinoma (HNSCC)

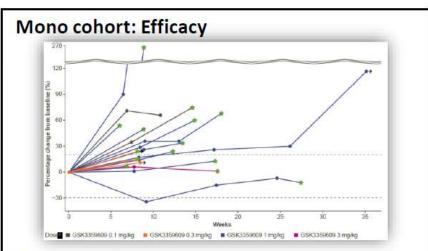
INDUCE-1: Study Design

COMBO IMMUNO

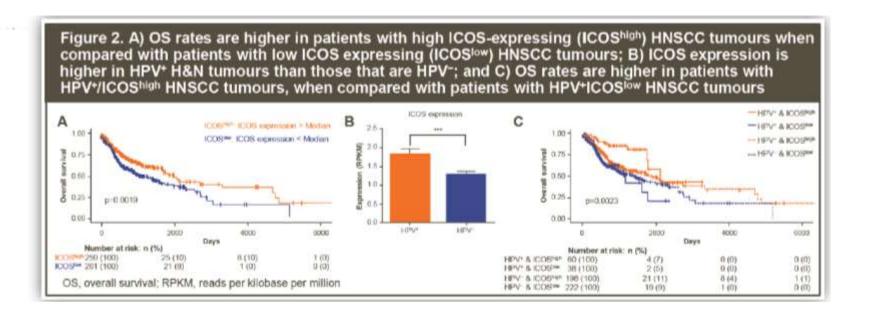
ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28


Andreas Hutloff*, Anna M. Dittrich*†, Katja C. Beier*†, Barbara Eljaschewitsch*, Regine Kraft‡, Ionnis Anagnostopoulos§ & Richard A. Kroczek*

Hutloff et al Nature 1999



RESULTS:

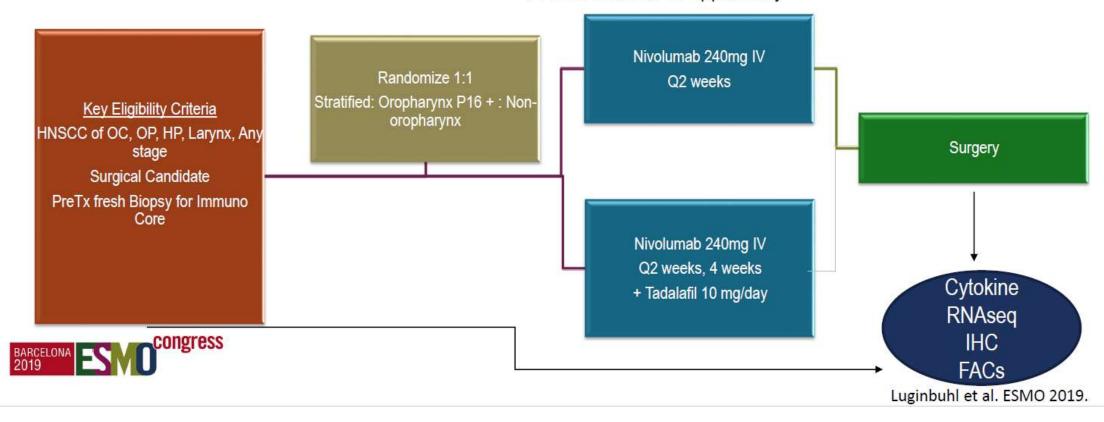


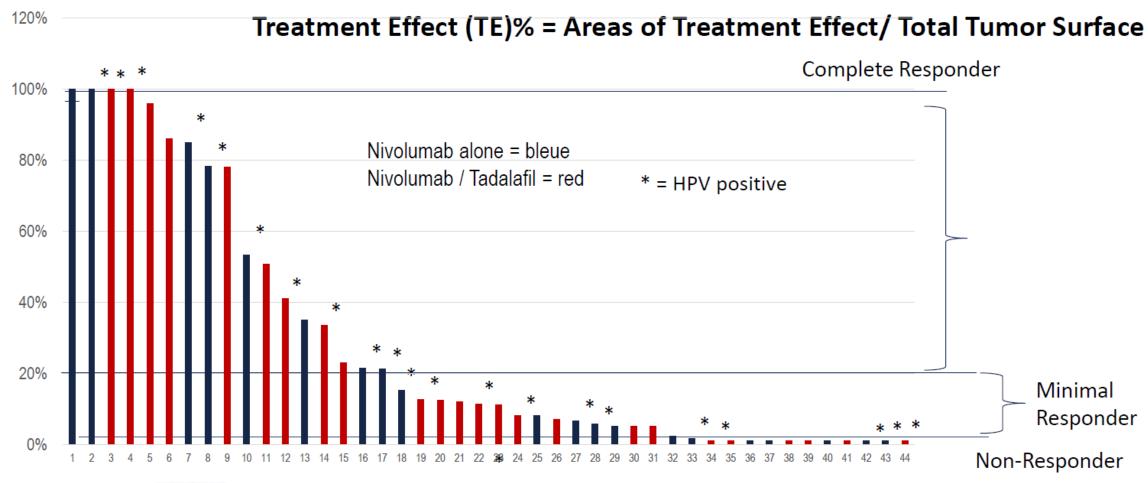
- In the combination cohort:
 - ORR was 24% (n=R; 95% CI; 10.7, 41.2) and DCR was 65% (n=22; 95% CI; 46.5, 80.3) from 34 evaluable patients
 - Responses were durable with all responding patients maintaining benefit for ≥6 months
 - Median OS was not reached at time of analysis (95% CI: 8.2, NR); further analyses of OS are ongoing
 - Median PFS was 5.6 months (95% Ct: 2.4, 7.4)

 Of the 16 evaluable patients in the monotherapy cohort, ORR was 6% (n=1; 95% CI: 0.2, 30.2) and DCR was 31% (n=5; 95% CI: 11.0, 58.7)

IMMUNO + MODULATORI

NIVOLUMAB + TADALAFIL (ABSTR. 1116)

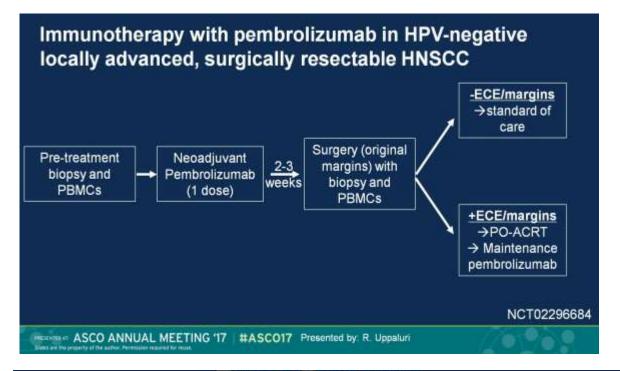

Background: Tadalafil alters immune microenvironment


CD8+ effector cells with boost in IL-2 production

Myeloid Derived Suppressor Cells (MDSCs), Tregs, Arginase

4 Week Window of Opportunity

PATHOLOGIC TREATMENT EFFECT: PRIMARY SITE (ABSTR. 1116)

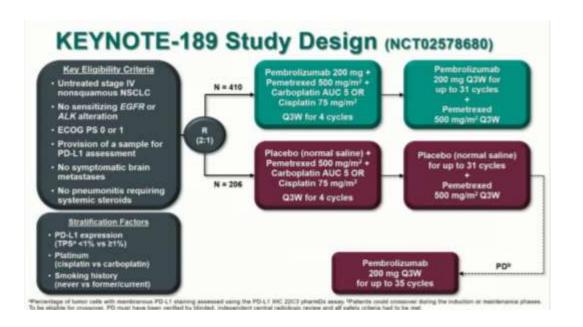


IL SETTING ... CONTA!

Nature Reviews | Immunology

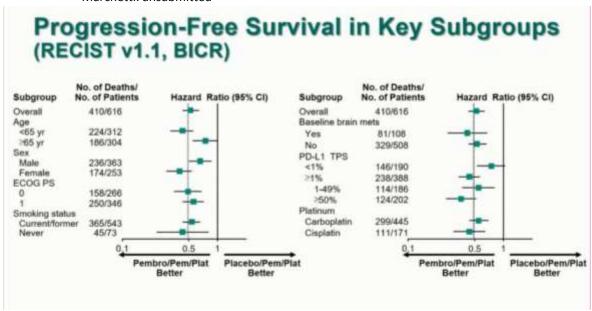
entation is the intellectual property of the author/presenter. Contact them at justin ballocal Vanderbill edu for permission to reprint and/or distribute.

Tumor Response


Patient ID	cTNM	pTNM	+Margin	LRH/DM	pembro to surgery (days)	Response	Method
(4)	T4N2c	T4N20		None	15		Exam/CT
2	T4N≥	T4N2b	+	None*	15		
- 3	T4N0	T2N0		None	18		
4.1	T4N0	T3N0		None	17	*	Exam/CT/Path
- 5	T4N2c	T4N2c		None	15		
6	T4N0	T4N0		None	19		
7	T4N1	T3N0		None	18		
8	T4N0	T4NX		None	15		
9	T4N2b	T4N1		None	18		
10	T4N25	T4N1		None	14	+	Path
11	T4N0	T4N1		None	21		0,000,000,000
12	T4N2a	T4N0		None	16		
13	T2N1	TINIT		None	14	+	Examipath
14	T4N2≥	TONO		None	18	+	Exam
15	T4N20	T4N20		None	13+34		Path
16	T4N2	T4M2b		None	15		
17	T4N2c	T4N1		None	16		Path
18	T4N2B	T4N2b	-	None	22	+	Path
19	T4N25	T4N2b		None	14		Exam/Path
20	T2N2B	TIND		None	15	+	Exam/CT/Path
21	T4N1	T4N1		None	19	+	Path
22	T2N2b :	T2N2b		None	18		
23	T4N25	T4N2b		Surgery 5/15	20		Path
24	T4N0	T4N0		Surgery 5/12	18		
26	T4N2c			Surgery on 6/13	111/2/2		

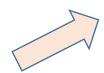
Response= change in tumor noted on exam, CT or pathology

50% (12/24) with evidence of response


Presented by R. Uppaluri

NEED TRIAL 53 PAZIENTI HN 2L

	Univariate analysis		
	P value		
Age (≥ 69 years)	ns		
Sex	ns		
linfoadenectomia	ns		
N linfonodi	ns		
Sedi metastatiche	ns		
PS	ns		
CBDCA vs CDDP	0,03		


Botticelli, Mezi, Pomati, Cassano, Ronzino, Pizzuti, Vici, Cortellini, Salati, Nuti, Marchetti. unsubmitted

STARTING FROM OLD APPROACH

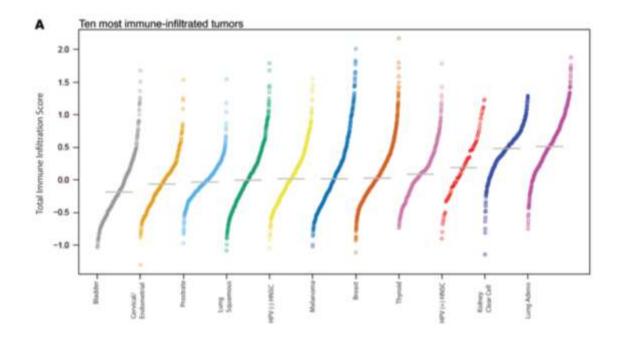
BETTER SELECTING PATIENTS

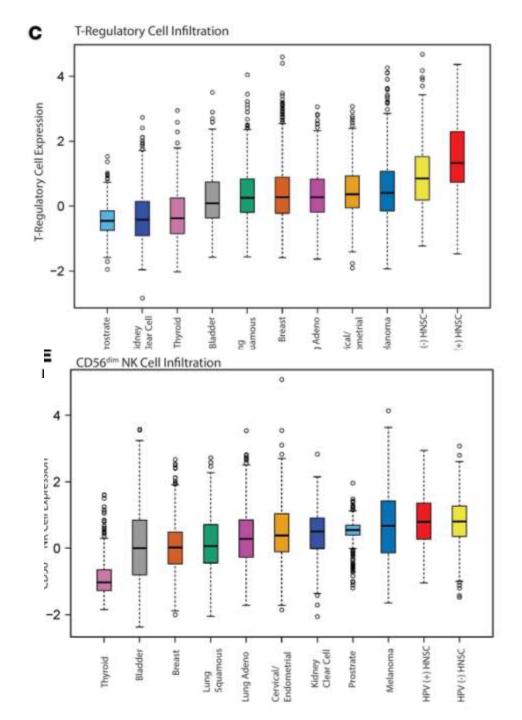
HOW TO INCREASE OUTCOME ???

WITH NOVEL COMBINATIONS

WITH NOVEL TARGET

A PHASE II STUDY OF MONALIZUMAB IN PATIENTS WITH RECURRENT/METASTATIC SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECK

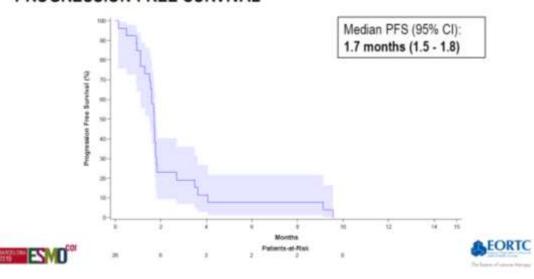

RESULTS OF THE I1 COHORT OF THE EORTC-HNCG-1559 TRIAL (UPSTREAM)

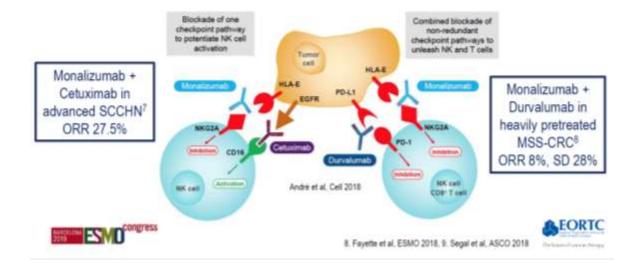

R Galot, C Le Tourneau, E Saada-Bouzid, A Daste, C Even, P Debruyne, S Henry, S Zanetta, A Rutten, L Licitra, JL Canon, MC Kaminsky, P Specenier, S Rottey, L Dirix, T Raveloarivahy, C Fortpied, M Vanlancker, AS Govaerts, JP Machiels

esmo.org

NUOVA IMMUNO

SONO TUMORI «IMMUNO-INFILTRATI»

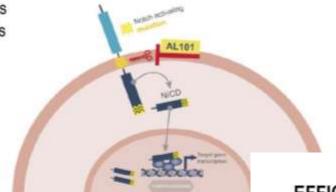



EORTC-HNCG-1559 TRIAL (UPSTREAM)

Recurrent/metastatic SCCHN progressive after platinum-based therapy Primary consent and acreening eligibility Biopsy (sequencing of largeted genes and BHC) immunotherapy cohorts. Biomarker-driven cohorts MEL Physician's choice Afirtirib Monalizumab Cohort I1 Physician's choice Parbociditi-Physician's choice 84/936negBedD tilepparts "platinum-sanutive" informed consent@nustBir taken at@fimepoints: 85:9:10 pest Althegistration ompharyngeal cancer After allocation/billpatient@ohert and@efure **EORTC** randomization, When applicable (Selecthethethetheme) m E2/ BE-EGFRI-SINANA Angeratinits. print view through

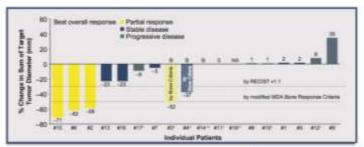
PROGRESSION-FREE SURVIVAL

MONALIZUMAB


ACCURACY: A PHASE 2 TRIAL OF AL101, A PAN-NOTCH INHIBITOR, IN PATIENTS WITH RECURRENT/METASTASTIC ADENOID CYCTIC CARCINOMA WITH NOTCH ACTIVATING MUTATIONS: PRELIMINARY SAFETY AND EFFICACY DATA (1148P)

R. Ferrarotto, (MDAndersen), I.J. Wirth, J. Muzaffar, C. Rodriguez, E. Dekel, R.M. Walker, C. Nadri-Shay, G.S. Gordon, G. Gordon, A.L. Ho

Activating NOTCH mutations in 34% of ACCs


Distinct pattern of metastasis, poor prognosis

Treatment: AL101: 4 mg IV weekly

NUOVA TARGET

EFFICACY

Well tolerated PR 22% SD 39% PD 39%

Promising results, stage 2 ongoing

COME CAMBIERÀ LA NOSTRA PRATICA CLINICA?

IL PUNTO DI VISTA DELL'ESPERTO...

