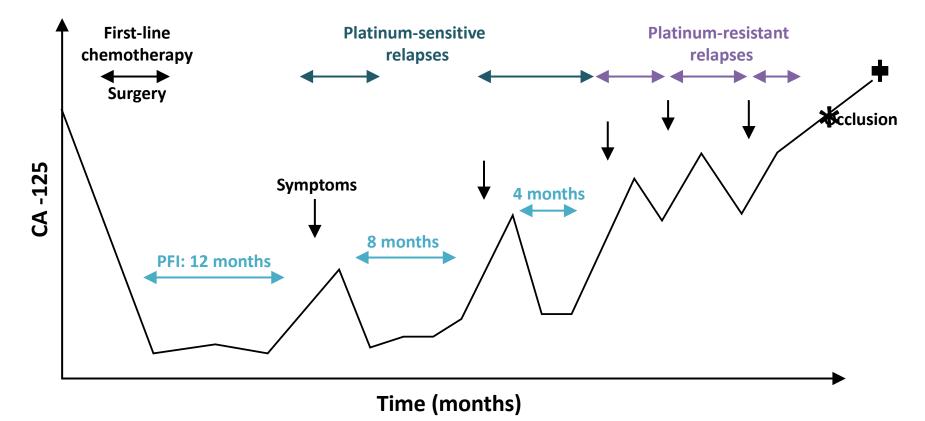

POST ESMO FROM BARCELLONA TO REAL WORLD

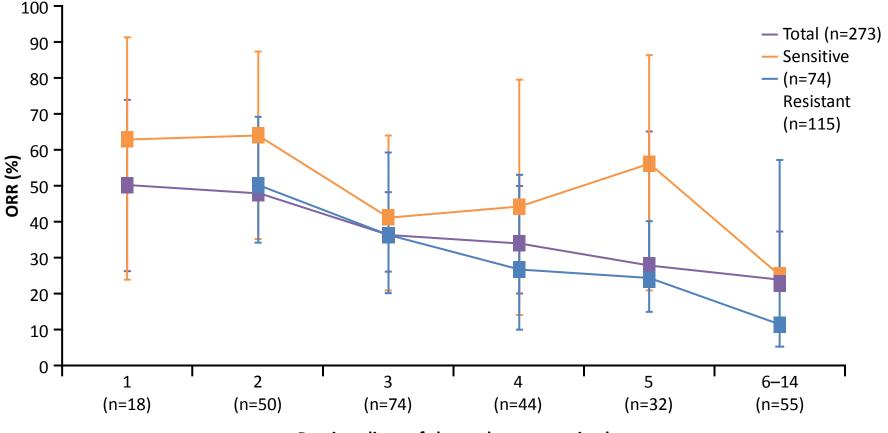
Roma 2-3/12/2019

Il punto di vista dell'esperto


Domenica Lorusso Gynecologic Oncology Unit Research Unit Development, Scientific Direction Fondazione Policlinico Universitario A Gemelli IRCCS

Progress in the management of ovarian Cancer: Evolution over 40 years

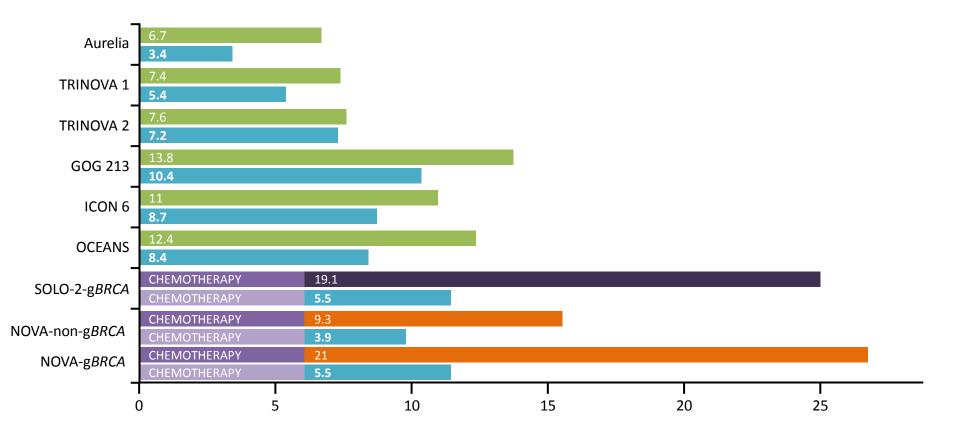
PARPi, poly adenosine diphosphate ribose polymerase inhibitor.


Advanced ovarian cancer: A 'chronic' disease with multiple relapses

PFI: platinum-free interval or duration of disease control without chemotherapy.

du Bois a, Pfisterer J. Zentralbl Gynakol. 2004;126:312-4.

Response to treatment in patients with ovarian cancer declines with increasing disease recurrence


Previous lines of chemotherapy received

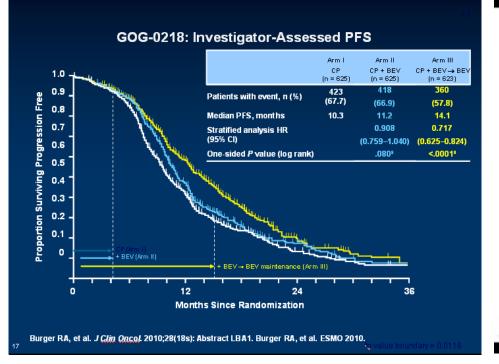
N numbers show total population; confidence lines represent 95%

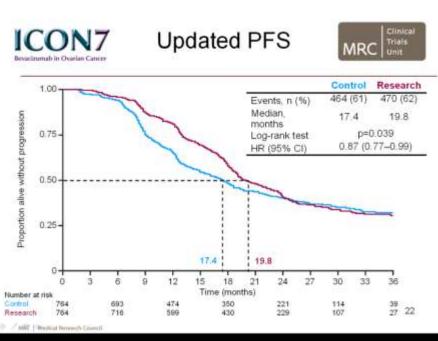
Cls for total population.

CI, confidence interval; ORR, overall response rate.

How effective is "watchful waiting"?

Aghajanian C et al. *J Clin Oncol.* 2012;30:2039–45; Coleman RL et al. *Gynecologic Oncol.* 2015;137:386–91; Ledermann J et al. *Lancet Oncol.* 2014;15:852–61; Ledermann JA et al. *Lancet.* 2016;387:1066–74; Marth C, et al. *European J Cancer.* 2017;70:111–121; Monk BJ et al. *Lancet Oncol.* 2014;15:799–808; Pujade-Lauraine E et al. *J Clin Oncol.* 2014;32:1302–8; Mirza MR et al. *N Engl J Med.* 2016;375:2154–64.

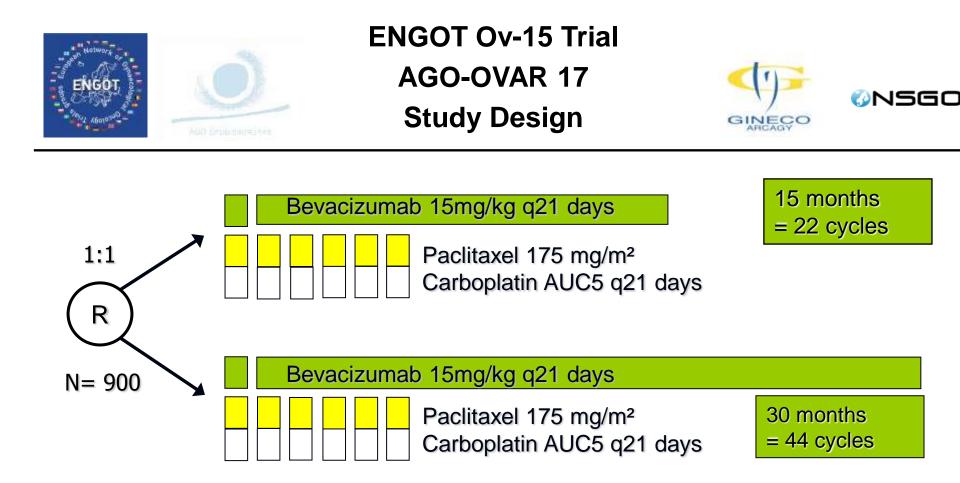

Median PFS from placebo arms may provide insights. PFS, progression-free survival.


ADVANCED STAGE

What is the current role of bevacizumab in first-line treatment?

Summary of recommendations	LoE	GoR	Consensus
Bevacizumab (15mg/kg or 7.5 mg/kg every 3 weeks for maximum of 15 months) improves progression-free survival in patients with stage III-IV ovarian cancer and should be considered in addition to carboplatin and paclitaxel	T	Α	Yes: 97.5% (39 voters) Abstain: 2.5% (1 voter)
Bevacizumab in the neoadjuvant setting can be considered although the additional improvement in efficacy is not proven with level I evidence	Ш	В	Yes: 97.5% (39 voters) No: 2.5% (1 voter)
Bevacizumab can be safely administered in the neo-adjuvant setting before and after IDS providing the interval between surgery and administration is at least 4-6 weeks	Ш	В	Yes: 100% (40 voters)

Two positive trials with bevacizumab in front line


Overall Survival

	Arm I CP (n = 625)	Arm II CP + Bev (n = 625)	Arm III CP + Bev → Bev (n = 623)
Deaths	156 (25.0%)	150 (24.0%)	138 (22.2%)
1-Year Survival	90.6%	90.4%	91.3%

Events were observed in ~ 24% of patients at the time of database lock.

Burger RA et al. *Proc ASCO* 2010; Abstract LBA1.

HOW LONG?

Strata

- macroscopic residual tumor (yes vs no)
- FIGO Stage (IIB-IIIC vs IV)
- Study Group

Primary endpoint:

PFS (non inferiority -> superiority)

Main question: treatment duration Bev

Chemotherapy plus or minus bevacizumab for platinum-sensitive ovarian cancer patients recurring after a bevacizumab containing first line. The randomized phase 3 trial MITO16B -MaNGO OV2B - ENGOT OV17

Sandro Pignata, Domenica Lorusso, Florence Joly, Ciro Gallo, Nicoletta Colombo, Cristiana Sessa, Aristotelis Bamias, Carmela Pisano, Frédéric Selle, Eleonora Zaccarelli, Giovanni Scambia, Patricia Pautier, Maria Ornella Nicoletto, Ugo De Giorgi, Coraline Dubot, Alessandra Bologna, Michele Orditura, Isabelle Ray-Coquard, Francesco Perrone, Gennaro Daniele

on the behalf of MITO, GINECO, MaNGO, SAKK and HeCOG groups

Sandro Pignata

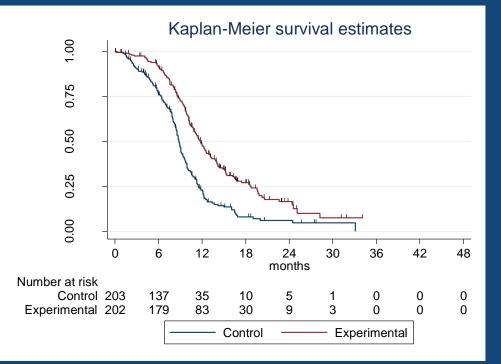
PRESENTED BY:

Study Design

Platinum-based Chemotherapy:

- Carboplatin + Paclitaxel +/- Beva 15mg/kg q 21
- Carboplatin + Gemcitabine +/- Beva 15mg/kg q 21
- Carboplatin + PLD q 28 +/- Beva 10mg/kg q 14

Stratification:


- center
- relapse during or after 1° line Beva
- performance status
- chemo backbone

Sandro Pignata

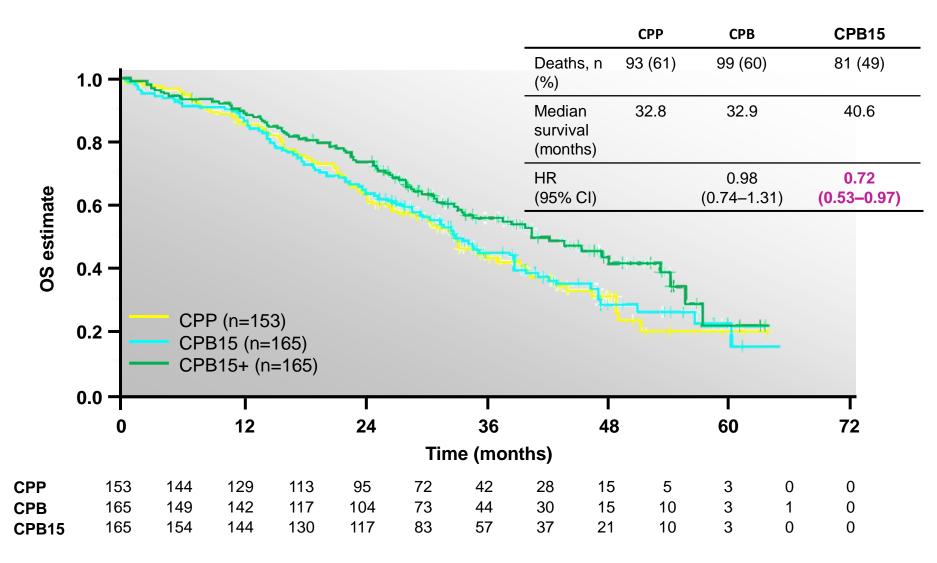
PRESENTED BY:

PFS Investigator assessed (primary end-point)

	Standard	Experimental	Log Rank P
# events	161	143	
Median PFS	8.8 mos	11.8 mos	<0.001
HR* (95%CI)	0.51 (
*adjusted by:			

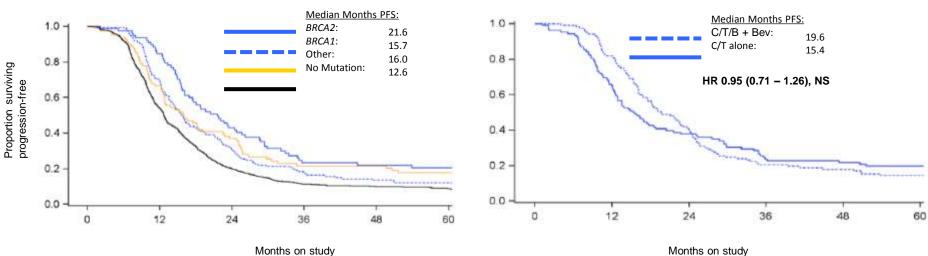
age, PS, centre size, bevacizumab at relapse, chemo backbone, residual disease at initial surgery

Sandro Pignata


PRESENTED BY:

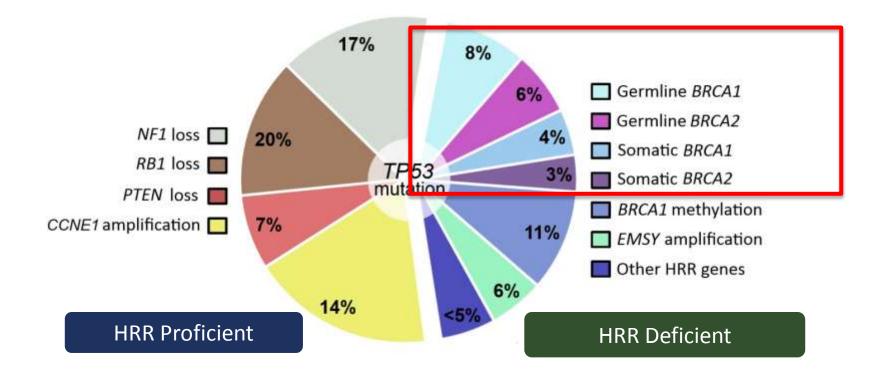
WHICH PATIENTS?

Bevacizumab in ovarian cancer: four pivotal trials: **Dose? Duration? Setting?**


		Sh. y of rapy	Bevacizumab	PFS HR
First line	M/2			
	GOG-0218 (n=1873)	Paclitaxel Coboplatin	Concurrent and r SinQnance 5 r g/ Sq3w (3-arn Diccr S)	0.72
	ICOn 12 (n=1528)	Paclitaxe	Concurrently c .ly 7.5 mg/kg q3w 2 arm)	0.81
Second line			NS-	
Platinum resistant	Aur 12 (n=361,	Caely Topotecan Paclitaxel	Concurrent 10 mg/kg q2w 2 arm)	0.48
Platinum sensitive	OCEANS ⁴ (n=484)	Cersi Ibine Caru p' tîn	Concurrent 15 mg/kg q3w (2 arm)	0.48
				1. Burger et al. N Engl J Med 2012 2. Perren et al. N Engl J Med 2012 ade-Laurain et al. J Clin Oncol 2012 Aghajanian et al. J Clin Oncol 2012

OS benefit is suggested with chemotherapy + Avastin and continued single-agent Avastin in stage IV disease

BRCA mutations confer a better prognosis – what is the outcome of these patients with 'standard of care' chemotherapy and bevacizumab?


GOG 218 : Carboplatin/paclitaxel versus carboplatin/paclitaxel+ bevacizumab with bevacizumab maintenance

Mutations (N = 228)

Norquist et al SGO 2016

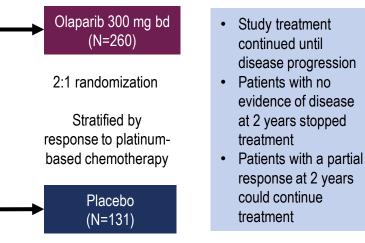
Rationale for PARP inhibitors in ovarian cancer: high grade serous ovarian cancer biology

SOLO1: Phase III trial of maintenance olaparib following platinum-based chemotherapy in newly diagnosed patients with advanced ovarian cancer and a *BRCA1/2* mutation

<u>Kathleen Moore</u>,¹ Nicoletta Colombo,² Giovanni Scambia,³ Byoung-Gie Kim,⁴ Ana Oaknin,⁵ Michael Friedlander,⁶ Alla Lisyanskaya,⁷ Anne Floquet,⁸ Alexandra Leary,⁹ Gabe S. Sonke,¹⁰ Charlie Gourley,¹¹ Susana Banerjee,¹² Amit Oza,¹³ Antonio González-Martín,¹⁴ Carol Aghajanian,¹⁵ William Bradley,¹⁶ Elizabeth S. Lowe,¹⁷ Ralph Bloomfield,¹⁸ Paul DiSilvestro¹⁹

¹Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, USA; ²University of Milan-Bicocca and IEO, European Institute of Oncology IRCCS, Milan, Italy; ³Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica, Rome, Italy; ⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ⁵Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁶University of New South Wales Clinical School, Prince of Wales Hospital, Randwick, Australia; ⁷St Petersburg City Oncology Dispensary, St Petersburg, Russia; ⁸Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France; ⁹Gustave-Roussy Cancer Campus, Villejuif, France; ¹⁰The Netherlands Cancer Institute, Amsterdam, The Netherlands; ¹¹Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; ¹²The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK; ¹³Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹⁴Clinica Universidad de Navarra, Madrid, Spain; ¹⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁶Froedtert and the Medical College of Wisconsin, Milwaukee, WI, USA; ¹⁷AstraZeneca, Gaithersburg, MD, USA; ¹⁸AstraZeneca, Cambridge, UK; ¹⁹Women & Infants Hospital, Providence, RI, USA

ClinicalTrials.gov identifier: NCT01844986


This study was sponsored by AstraZeneca; part of an alliance between AstraZeneca and Merck & Co., Inc. Conducted in partnership with the Gynecologic Oncology Group (GOG-3004)

esmo.org

Study design

- Newly diagnosed, FIGO stage III-IV, high-grade serous or endometrioid ovarian. primary peritoneal or fallopian tube cancer
- Germline or somatic BRCAm
- ECOG performance status 0-1
- Cytoreductive surgery*
- In clinical complete response or partial response after platinum-based chemotherapy

2 years' treatment if no evidence of disease

Primary endpoint

Investigator-assessed PFS (modified RECIST 1.1)

Secondary endpoints

- PFS using BICR
 - PFS2
- Overall survival
- Time from randomization to first subsequent therapy or death
- Time from randomization to ٠ second subsequent therapy or death
- HRQoL (FACT-O TOI score)

*Upfront or interval attempt at optimal cytoreductive surgery for stage III disease and either biopsy and/or upfront or interval cytoreductive surgery for stage IV disease. BICR, blinded independent central review; ECOG, Eastern Cooperative Oncology Group; FACT-O, Functional Assessment of Cancer Therapy -Ovarian Cancer; FIGO, International Federation of Gynecology and Obstetrics; HRQoL, health-related quality of life; PFS, progression-free survival; PFS2, time to second progression or death; RECIST, Response Evaluation Criteria in Solid Tumours; TOI, Trial Outcome Index

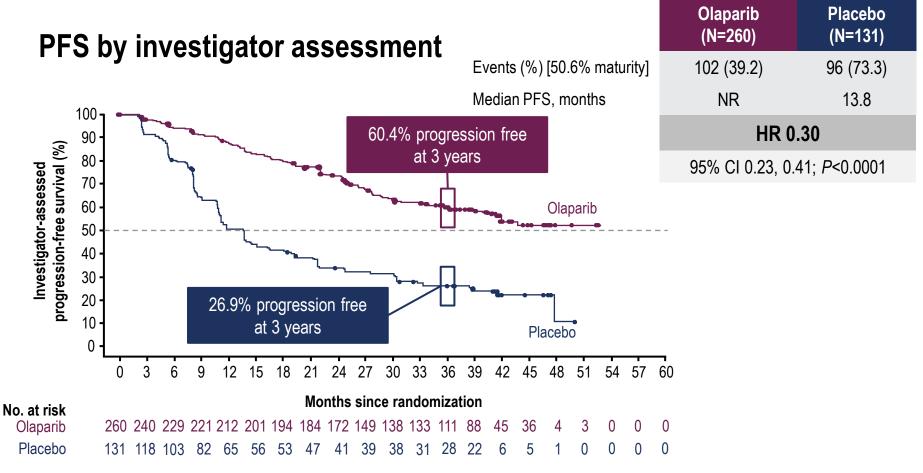
continued until

Patients with no

treatment

treatment

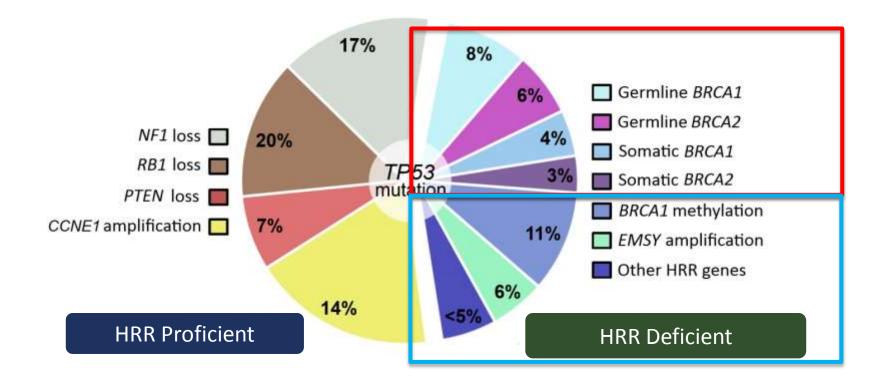
disease progression


evidence of disease

at 2 years stopped

response at 2 years

could continue



CI, confidence interval; NR, not reached

Rationale for PARP inhibitors in ovarian cancer: high grade serous ovarian cancer biology

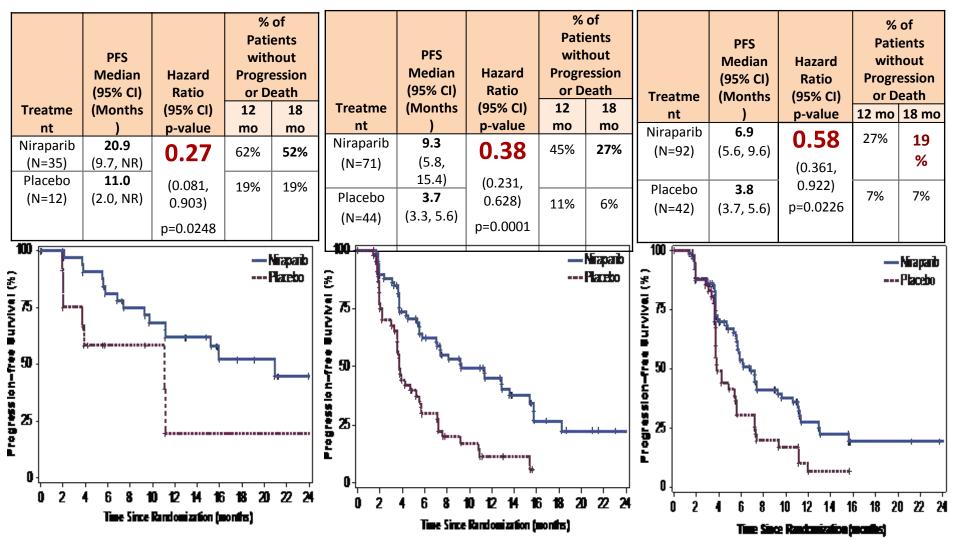
Two Main HRD Genomic Scar Tests Have Been Developed

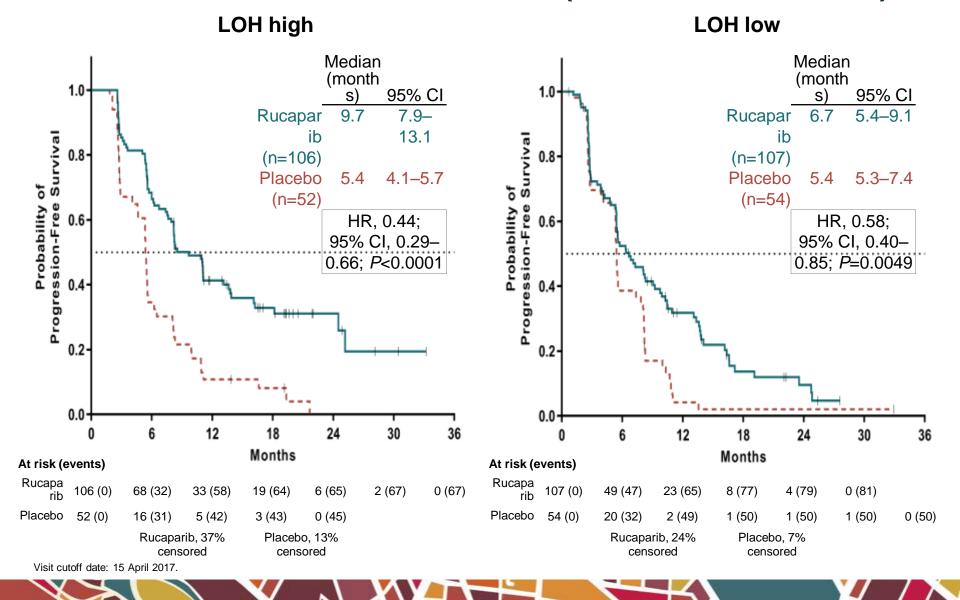
- Genomic loss of Heterozygosity (LOH)
- Foundation Medicine is developing a test in collaboration with Clovis Oncology that assesses HRD status using an algorithm comprising two elements
 - tBRCAm status
 - Genomic LOH (high or low)
- A tumour is defined as HRD negative if it is BRCAwt with low genomic LOH

- Myriad myChoice HRD
- Provides a score based on an assessment of three genomic scars:
 - Loss of heterozygosity (LOH)
 - Telomeric allelic imbalance
 - Large-scale state
 transitions
- A score ≥42 (on a scale of 0-100) represents a positive score (loss of DNA repair function), while a score <42 reflects a negative score (intact DNA repair function)
- Also tests for tBRCAm

Jenner ZB, Sood AK and Coleman RL. Future Oncol. 2016 Jun; 12(12): 1439–1456.

Platinum combination followed by iPARP Niraparib: ENGOT ov16-NOVA exploratory analyses


HRD-negative


HRD-positive

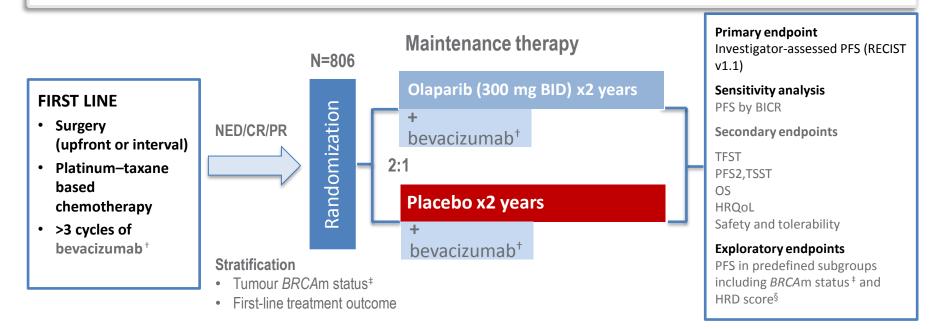
sBRCAmut

BRCAwt

ARIEL3: INVESTIGATOR-ASSESSED PROGRESSION-FREE SURVIVAL: PATIENTS WITH BRCA WILD-TYPE OC (EXPLORATOY ANALYSIS)

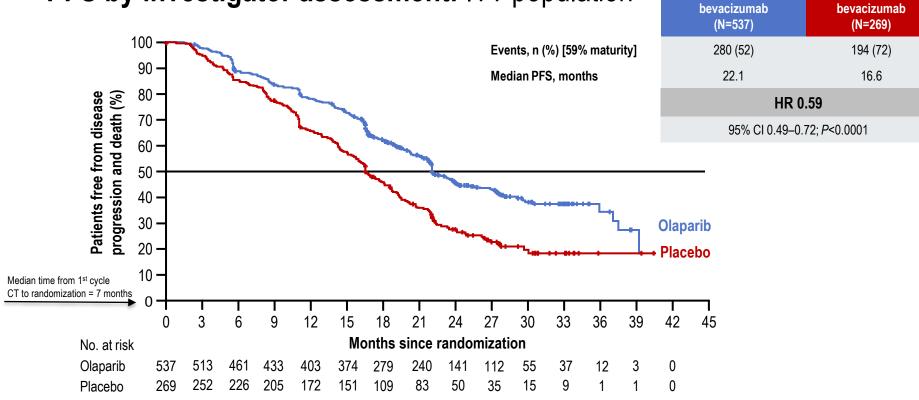
Phase III PAOLA-1/ENGOT-ov25: maintenance olaparib with bevacizumab in patients with newly diagnosed, advanced ovarian cancer treated with platinum-based chemotherapy and bevacizumab as standard of care

<u>Isabelle Ray-Coquard</u>, Patricia Pautier, Sandro Pignata, David Pérol, Antonio González-Martin, Paul Sevelda, Keiichi Fujiwara, Ignace Vergote, Nicoletta Colombo, Johanna Mäenpää, Frédéric Selle, Jalid Sehouli, Domenica Lorusso, Eva Maria Guerra Alia, Claudia Lefeuvre-Plesse, Ulrich Canzler, Alain Lortholary, Frederik Marmé, Eric Pujade-Lauraine, Philipp Harter



ClinicalTrials.gov identifier: NCT02477644 This study was sponsored by ARCAGY Research

esmo.org



Newly diagnosed FIGO stage III–IV high-grade serous or endometrioid ovarian, fallopian tube or primary peritoneal cancer*

*Patients with other epithelial non-mucinous ovarian cancer were eligible if they had a germline BRCA1 and/or BRCA2 mutation

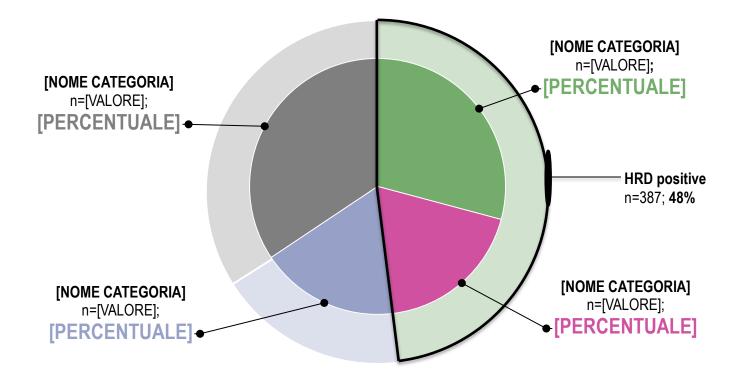
[†] Bevacizumab: 15 mg/kg, every 3 weeks for a total of 15 months, including when administered with chemotherapy ; [‡] by central labs; [§]by Myriad myChoice HRD β_{Ms} complete response; HRD, homologous recombination deficiency; HRQoL, health-related quality of life; NED, no evidence of disease; OS, overall survival; PFS, progression-free survival; PFS2, time to second progression or death; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumours; TFST, time to first subsequent therapy or death; TSST, time to second subsequent therapy or death

PFS by investigator assessment: ITT population

ITT, intention-to-treat population; Median follow-up was 24.0 months in the olaparib + bevacizumab arm and 22.7 months in the placebo + bevacizumab arm

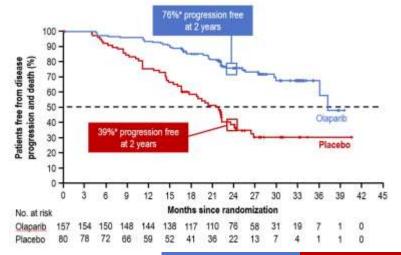
Olaparib +

Placebo +


Patient disposition

		Olaparib + bevacizumab	Placebo + bevacizumab
Randomized, n		537	269
Treated, n (%)		535 (99.6)	267 (99.3)
Discontinued study treatment , n (%)		331 (62)	194 (73)
	Disease progression per RECIST	182 (34)	155 (58)
	Disease progression non-RECIST	14 (3)	13 (5)
	Toxicity	109 (20)	13 (5)
	Patient decision	4 (<1)	4 (1)
	Death	1	3
	Other*	21 (4)	6 (2)
Patients receiving treatment at data-cut-off, n (%)		56 (10)	20 (7)
Median duration of treatment, months	Olaparib/placebo Bevacizumab	17.3 11.0	15.6 10.6

*Other includes lost to follow-up and other



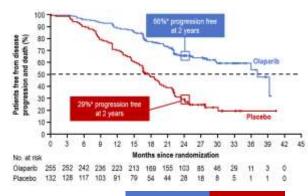
Myriad biomarker subgroups in PAOLA-1

HRD positive is either tumour BRCA mutation and/or HRD score ≥42 <u>Reasons for HRD status unknown:</u> 3% no tumour sample available; 3% insufficient tumour sample to test; 12% HRD test failure:86 low tumour content (n=86); low DNA quality (n=1); insufficient heterozygosity (n=4)

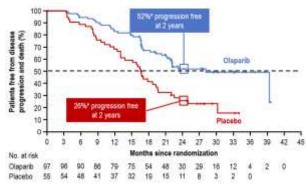
PFS by BRCA mutation status

tBRCAm	Olaparib (n=157)	Placebo (n=80)	
Events, n (%)	41 (26)	49 (61)	
Median PFS, months	37.2	21.7	
	HR 0.31		
	95% CI 0.20-0.47		

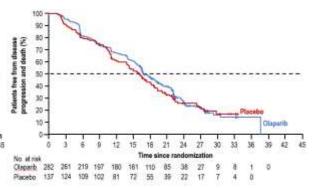
Patients free from disease progression and death (%) 33%* progression free 70. at 2 years 23%* progression free at 2 years Olaparib Placebo Months since randomization No. at risk 359 311 285 259 236 162 130 65 Olaparib Placebo 189 174 154 139 113 99


Non-tBRCAm	Olaparib (n=380)	Placebo (n=189)	
Events, n (%)	239 (63)	145 (77)	
Median PFS, months	18.9	16.0	
	HR 0.71		
	95% CI 0.58–0.88		

*based on Kaplan-Meier estimates


PFS by HRD status

HRD-positive, including tBRCA (48%)

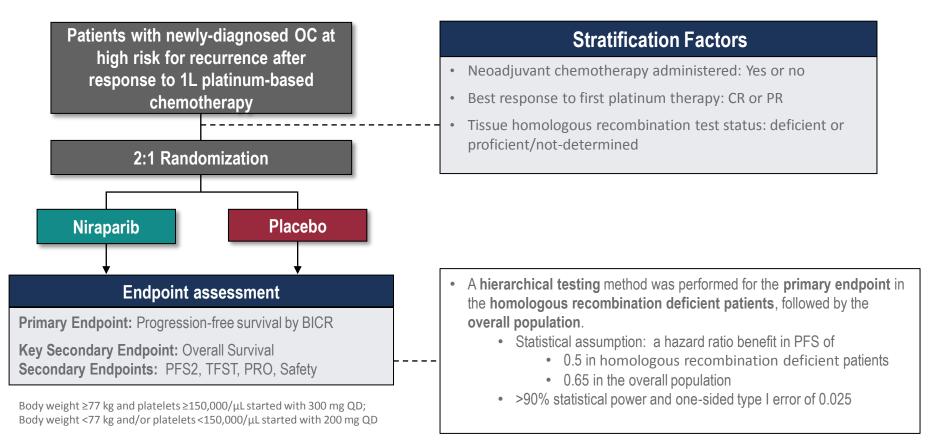


	Olaparib + bevacizumab (N=255)	Placebo + bevacizumab (N=132)	
Events, n (%)	87 (34)	92 (70)	
Median PFS, months	37.2	17.7	
	HR 0.33		
	95% CI 0.25-0.45		

HRD-positive, excluding tBRCA (19%)

HRD-negative/unknown (34%)

	Olaparib + bevacizumab (N=97)	Placebo + bevacizumab (N=55)
Events, n (%)	43 (44)	40 (73)
Median PFS, months	28.1	16.6
	HR 0	.43
	95% CI 0.	28–0.66

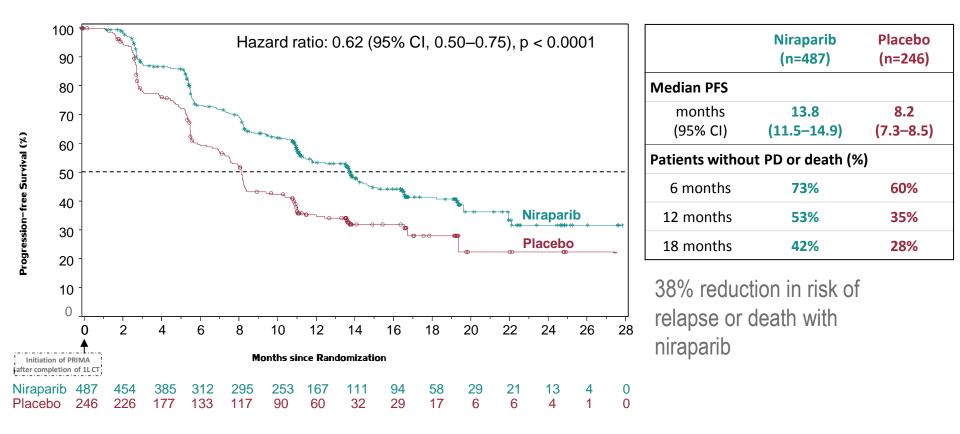

Olaparib + bevacizumab (n=282)	Placebo + bevacizumab (n=137)		
193 (68)	102 (74)		
16.9	16.0		
HR 0.92			
95% CI 0.72-1.17			

HRD-positive is an HRD score ≥42

*based on Kaplan-Meier estimates

PRIMA/ENGOT-OV26/GOG-3012 Trial Design

1L, first-line; BICR, blinded independent central review; CR, complete response; OC, ovarian cancer; OS, overall survival; PFS2, progression-free survival 2; PR partial response; PRO, patient-reported outcomes; TFST, time to first subsequent therapy.

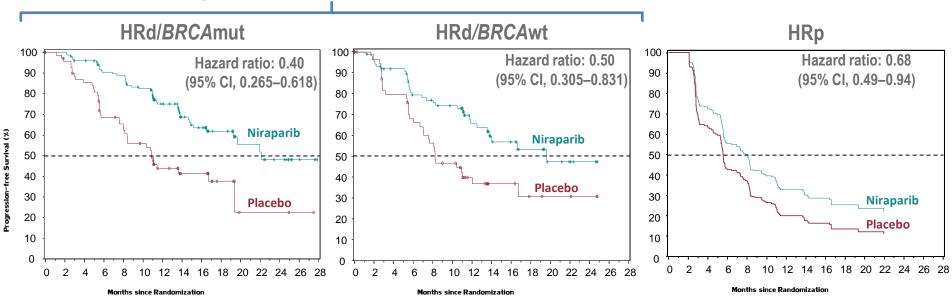

PRIMA Patient Characteristics and Baseline Demographics

Characteristic	Niraparib (n=487)	Placebo (n=246)	Overall (N=733)
Age, median (range), years	62 (32, 85)	62 (33,88)	62 (32, 88)
Weight, median, kg	66	66	66
Stage at initial diagnosis, n (%)			
III	318 (65)	158 (64)	476 (65)
IV	169 (35)	88 (36)	257 (35)
Prior NACT, n (%)			
Yes	322 (66)	167 (68)	489 (67)
No	165 (34)	79 (32)	244 (33)
Best response to platinum-based CT, n (%)			
CR	337 (69)	172 (70)	509 (69)
PR	150 (31)	74 (30)	224 (31)
Homologous recombination test status, n (%)			
HRd	247 (51)	126 (51)	373 (51)
BRCAmut	152 (31)	71 (29)	223 (30)
BRCAwt	95 (20)	55 (22)	150 (20)
HRp	169 (35)	80 (33)	249 (34)
HRnd	71 (15)	40 (16)	111 (15)

- 35% of patients were Stage
 IV
- 67% received NACT
- 99.6% with Stage III had residual disease post PDS
- 31% achieved a PR to 1L CT
- 51% had HRd tumors
- 30% had BRCAmut tumors

1L, first-line; CR, complete response; CT, chemotherapy; HRd, homologous recombination deficient; HRp, homologous recombination proficient; HRnd, Homologous recombination not determined; mut, mutation; NACT, neoadjuvant chemotherapy; PR, partial response; wt, wild-type.

PRIMA Primary Endpoint, PFS Benefit in the Overall Population



CI, confidence interval; Tx, Treatment; NE, not estimable; PD, progressive disease; PFS, progression-free survival Discordance in PFS event between investigator assessment vs BICR ≈12%

PRIMA: PFS Benefit in Biomarker Subgroups

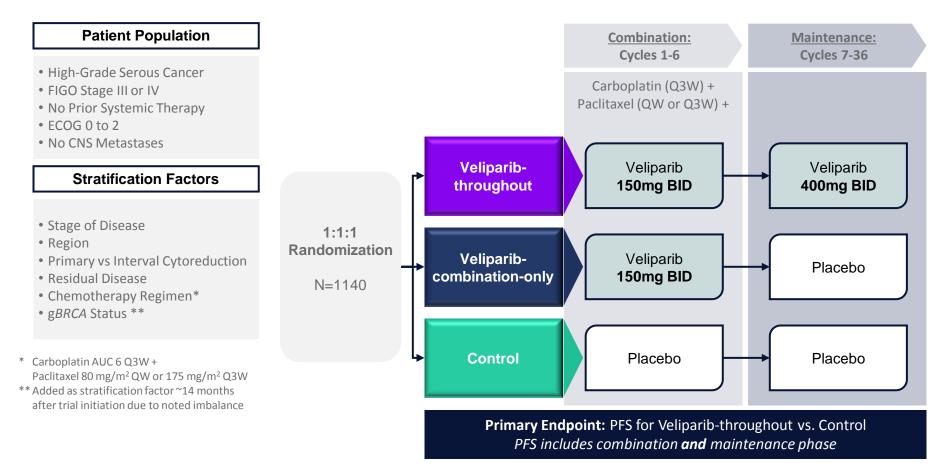
Homologous Recombination Deficient (HRd)

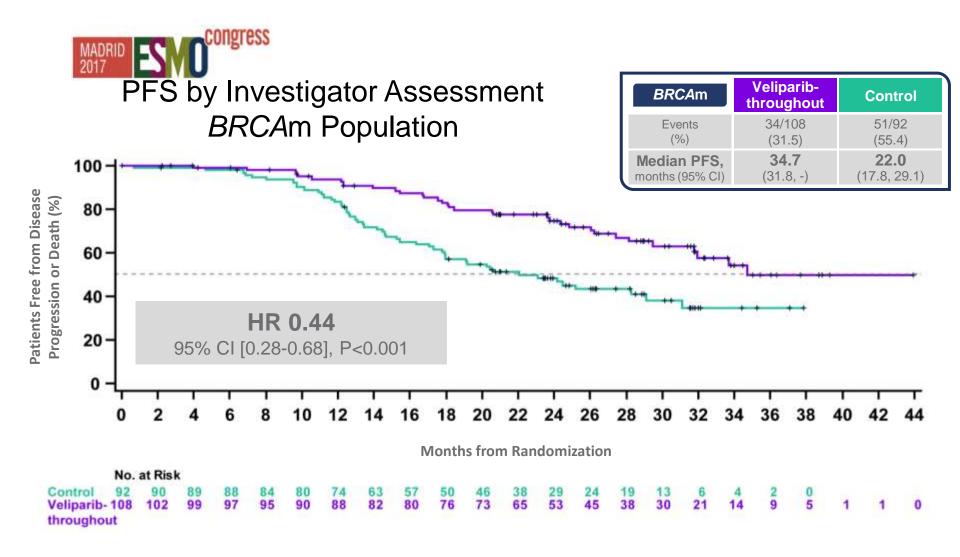
- Niraparib provided similar clinical benefit in the HRd subgroups (BRCAmut and BRCAwt)
- A continuum of niraparib benefit was observed across biomarker subgroups

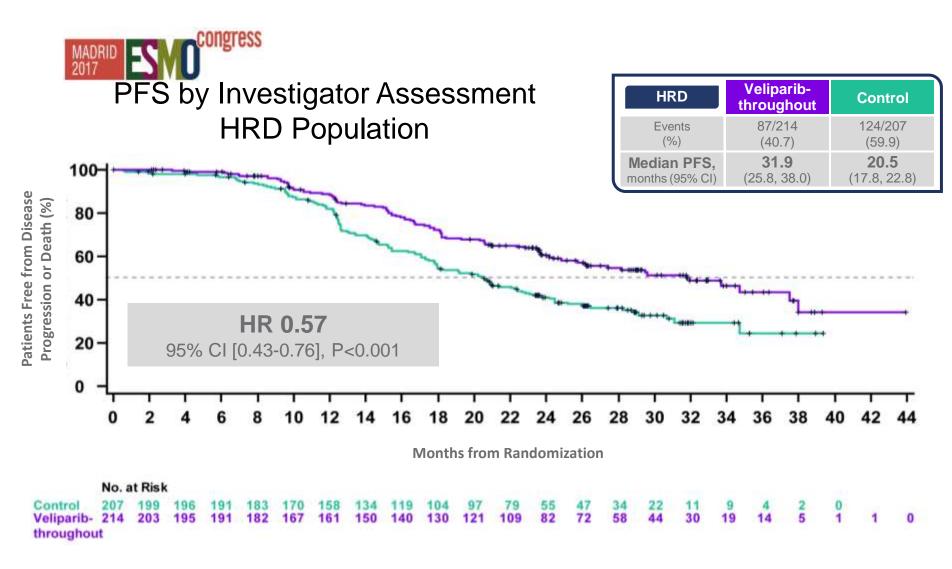
HRd/BRCAmut > HRd/BRCAwt > HRp

CI, confidence interval; CR, complete response; HRd, homologous recombination deficient; HRp, homologous recombination proficient; HRnd, Homologous recombination not determined; mut, mutation; PFS, Progression-free survival PR, partial response; wt, wild-type.

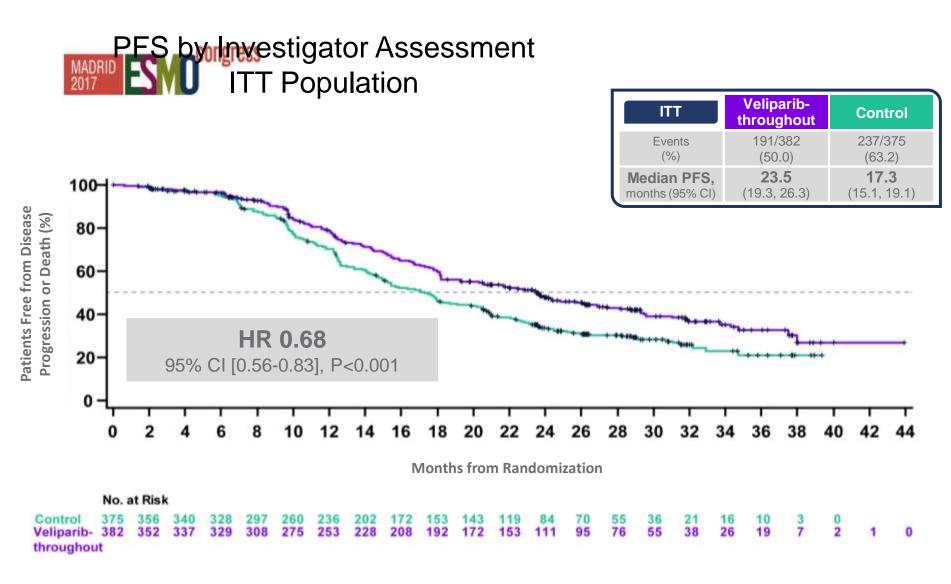
VELIA/GOG-3005: Integration of veliparib (V) with front-line chemotherapy and maintenance in women with high-grade serous carcinoma of ovarian, fallopian tube, or primary peritoneal origin (HGSC)

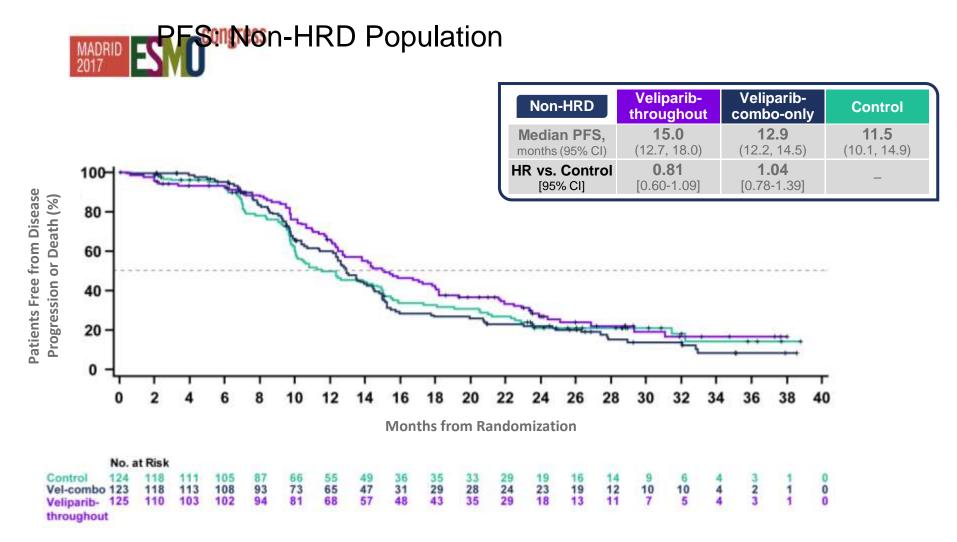

<u>Robert L. Coleman¹</u>, Gini F. Fleming², Mark F. Brady³, Elizabeth M. Swisher⁴, Karina D. Steffensen⁵, Michael Friedlander⁶, Aikou Okamoto⁷, Kathleen N. Moore⁸, Noa Ben-Baruch⁹, Theresa L. Werner¹⁰, Ana Oaknin¹¹, Joo-Hyun Nam¹², Charles A. Leath III¹³, Shibani Nicum¹⁴, David Cella¹⁵, Danielle M. Sullivan¹⁶, Peter J. Ansell¹⁶, Minh H. Dinh¹⁶, Carol Aghajanian¹⁷, Michael A. Bookman¹⁸

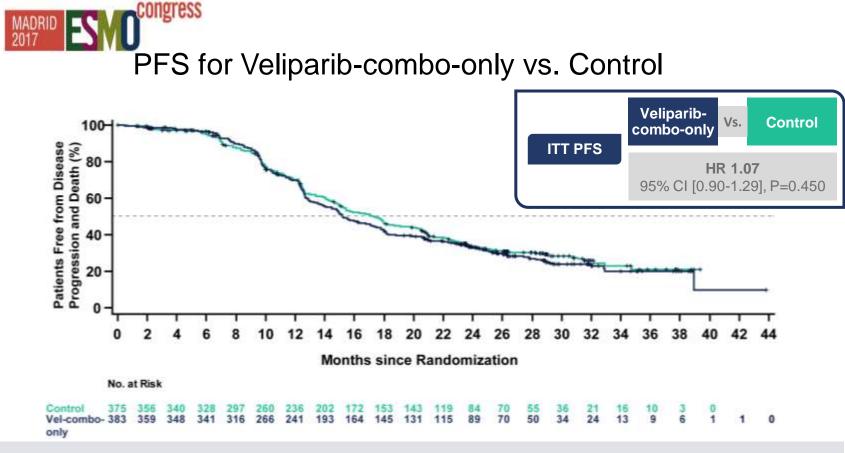

¹The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; ²The University of Chicago Medicine, Chicago, IL, USA; ³NRG Oncology Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY, USA; ⁴University of Washington, Seattle, Washington, USA; ⁵Vejle University Hospital of Southern Denmark, Vejle, Denmark; ⁶Prince of Wales Clinical School UNSW and Prince of Wales Hospital, Sydney, Australia; ⁷The Jikei University School of Medicine, Tokyo, Japan; ⁸Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; ⁹Kaplan Medical Center, Rehovot, Israel;¹⁰Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA;¹¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹²University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ¹³University of Alabama at Birmingham, Birmingham, AL, USA; ¹⁴Oxford University Hospitals, Oxford, United Kingdom;¹⁵Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA;¹⁶AbbVie Inc., North Chicago, IL, USA; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY, USA;¹⁸Kaiser Permanente Northern California, San Francisco, CA, USA


esmo.org

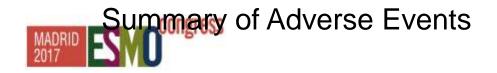
MADRID Study Design: VELIA/GOG-3005 (NCT02470585)



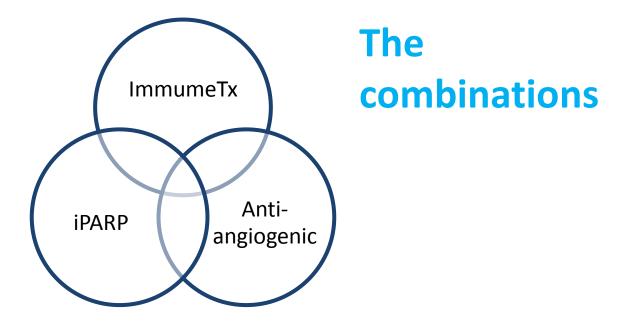

Median duration of follow-up was 28 months at the time of database lock.



Median duration of follow-up was 28 months at the time of database lock.



Median duration of follow-up was 28 months at the time of database lock.


Across *BRCA*m, HRD, and ITT, the veliparib-combo-only arm and the control arm demonstrated similar PFS

	Veliparib-throughout N = 377	Veliparib-combo-only N = 376	Control N = 371
Any Treatment-Emergent AE	377 (100)	376 (100)	371 (100)
Grade 3 or 4 AEs	332 (88)	329 (88)	285 (77)
Serious AEs	141 (37)	129 (34)	141 (38)
AEs Leading to Discontinuation of Veliparib/Placebo	97 (26)	49 (13)	43 (12)
Related to Disease Progression	6 (2)	11 (3)	18 (5)
Not Related to Disease Progression (Combination: Cycles 1-6)	40 (11)	29 (8)	22 (6)
Not Related to Disease Progression (Maintenance: Cycles 7-36) *	53 (14)	9 (3)	3 (1)
AEs Leading to Death	8 (2)	7 (2)	6 (2)

* Most discontinuations of veliparib occurred during Cycles 7-8

OC TREATMENT: FUTURE APPROACHES

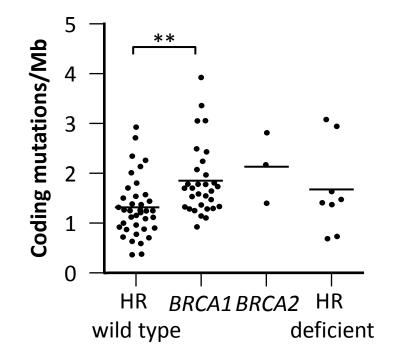
Studies with immune checkpoint inhibitors in ovarian cancer

Checkpoint inhibitor	Inclusion	Phase	N	Prior Therapy (no. lines)	Response Rate	Reference
		Ar	nti-CTLA-4			
Ipilimumab	recurrent OC	I	9	Vaccination and >1	10% PR, 33% SD	Hodi et al. 2008
		A	Anti-PD-1			
Nivolumab	PROC	II	20	≥4 (55%)	10% CR, 5% PR, 30% SD	Hamanishi et al. 2015
Pembrolizumab (KEYNOTE-28)	Recurrent OC	lb	26	≥3 (65%)	4% CR 8% PR 23% SD	Varga et al. 2015
Pembrolizumab (KEYNOTE-100)	Recurrent OC Cohort A: TFI of ≥ 3 to 12 months Cohort B: TFI of ≥ 3 months	II	376	A: 1-3 B: 4-6	8% ORR (17.3% ORR CPS>10)	Matulonis et al. 2018
		Α	nti-PD-L1			
Avelumab	PROC	lb	124	≥3 (58%)	9.7% PR 44% SD	Disis et al. 2016
Atezolizumab	Recurrent OC	lb	12	>6 (58%)	25% ORR	Infante et al. 2016
BMS-936559	Recurrent OC	I	17	>1	6% PR, 18% SD	Brahmer et al. 2012

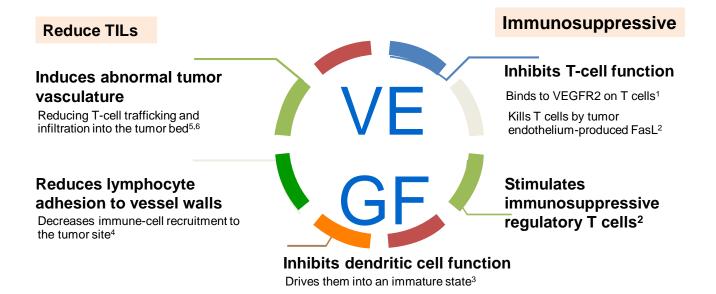
Marth et al., IJGC 2019

Studies with immune checkpoint inhibitors in ovarian cancer

Checkpoint inhibitor	Inclusion	Phase	N	Prior Therapy (no. lines)	Response Rate	Reference
		Ar	nti-CTLA-4			
lpilimumab	recurrent OC	I	9	Vaccination and >1	10% PR, 33% SD	Hodi et al. 2008
		ļ ķ	Anti-PD-1			
Nivolumab	PROC	Ш	20	≥4 (55%)	10% CR, 5% PR,	Hamanishi et al. 2015
Pembrolizumab (KEYNOTE-28)	Recurrent	RR	26	%-2	5%	Varga et al. 2015
Pembrolizumab (KEYNOTE-100)	Recurrent Cohort A: TFI of months Cohort B: TFI of ≥ 3 months			B: 4-6	(17.3% ORR CPS>10)	Matulonis et al. 2018
		A	nti-PD-L1			
Avelumab	PROC	lb	124	≥3 (58%)	9.7% PR 44% SD	Disis et al. 2016
Atezolizumab	Recurrent OC	lb	12	>6 (58%)	25% ORR	Infante et al. 2016
BMS-936559	Recurrent OC	I.	17	>1	6% PR, 18% SD	Brahmer et al. 2012

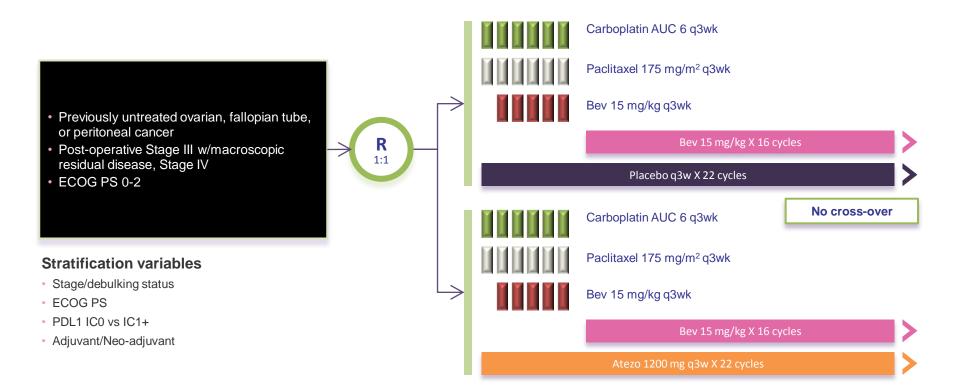

Marth et al., IJGC 2019

PARP Inhibitors in Combination with Immuno-Oncology Agents: Rationale


- Tumours with deleterious mutations in DNA repair genes (including *BRCA1/2*) have a high mutational load and a higher number of protein-coding mutations (neoepitopes) due to the inability of the cancer cell to repair DNA damage effectively¹
- BRCA1/2 mutant and HR-deficient tumours are correlated with higher PD-L1 expression and CD8 T-cell infiltration that predict PD-(L)1 mAb response²

onoress

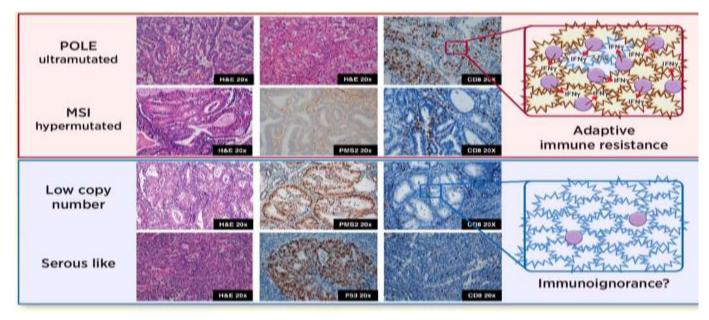
	PRIMA	Imagyn050 ENGOT OV39	Athena	First	ENGOT OV43	Duo-O	Total
Sponsor	Tesaro	Roche	Clovis	Tessaro	Merck	Astra Zeneca	
Group leader	GEICO(GOG)	GOG(MITO)	GOG(NCRI)	GINECO (GOG??)	BGOG(leading) – unsure whether GOG will join as supporting groups	AGO(GOG)	
ENGOT Model	С	С	С		С	С	
Randomisatio n	After CT	Upfront	Maintenance	Upfront	Upfront	Upfront	
Bev in Standardarm	No	Yes	No	Optional	Optional	Yes	
Exp. Arm	Nira	- TC-Bev- Atezo	- Ruca- Nivolu - Ruca - Nivolu	- Nira - Nira + O42	BRCA+: Ola + Pembro BRCA-: Pembro Pembro+Ola	- Durva - Durva+Ola	
NACT allowed	Yes	Yes	Yes	Yes	Yes	Yes	
RT=0	NO after PDS YES after IDS		CR/NED after CT	No	Yes	Yes	
Endpoint	PFS	PFS + OS	PFS	PFS	PFS+OS	PFS	
ΜΙΤΟ	Х 9	X 12	6	A 8	C 10	B 10	


Rationale for Combining Cancer Immunotherapy With Anti-VEGF

VEGF(R), vascular endothelial growth factor (receptor)

1. Gavalas NG, et al. Br J Cancer. 2012;107(11):1869-1875. 2. Terme M, et al. Cancer Res. 2013;73(2):539-549. 3. Coukos G, et al. Br J Cancer. 2005;92(7):1182-11874. Bouzin C, et al. J Immunol. 2007;178(3):1505-1511. 5. Shrimali RK, et al. Cancer Res. 2010;70(15):6171-6180. 6. Chen DS, et al. Immunity. 2013;39(1):1-10.

Imagyn trial



Immunotherapy in endometrial cancer

.

Piulats, JM. Clin Cancer Res. 2016;22(23):5623-5; Sharma, P. and Allison, JP. Science. 2015;348(6230):56-61.

Checkpoint Inhibitors in Endometrial Cancer

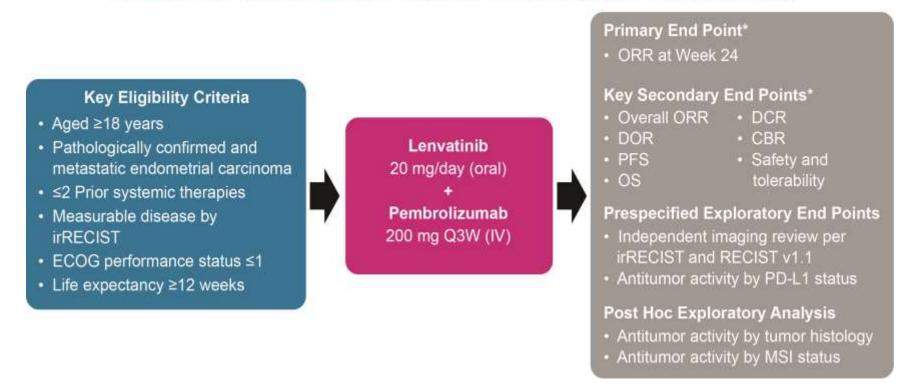
Author	Patient Population	IO	Results
Le et al. (2018)	MMRd tumors incl. 2 EC	Pembrolizumab	ORR 71%
Ott et al. (2017) Keynote 028	24 PD-L1+ pts.	Pembrolizumab	ORR 13%
Keynote 158	Multicohort MSI-high incl 17 EC	Pembrolizumab	ORR 38%
Fader et al. (2018)	MMRd tumors recurrent EC	Pembrolizumab	ORR 56% DCR 89%
Santin et al. (2016)	2 pts POLE and MSI-high	Nivolumab	Prolonged Response
Hasegava et al (2018)	23 metastatic EC pts.	Atezolizumab	ORR 13%
Oankin et al. (2019) GARNET	MSI-high/advanced EC	Dostarlimab	ORR 52%
Antill et al. (2019) PHAEDRA	Advanced/recurrent EC	Durvalumab	ORR MMR-d 43% ORR MMR-p 3%
Konstaninopoulos et al. (2019)	Recurrent/persisten EC	Avelumab	ORR MMR-d 27% ORR MMR-p 6%

Checkpoint Inhibitors in Endometrial Cancer

Author	Patient Population	10	Results
Le et al. (2018)	MMRd tumors incl. 2 EC	Pembrolizumab	ORR 71%
Ott et al. (2017) Keynote 028	24 PD-L1+ pts.	Pembrolizumab	ORR 13%
Keynote 15		Pembrolizumab	ORR 71% ORR 13% ORR 38% ORR 38% ORR 56% DCR 89% Prolonged Response ORR 13% ORR 52% ORR MMR-d 43% ORR MMR-p 3% ORR MMR-d 27%
	ficient: ORR 27%-71% oficient: ORR 3%-13%	Pembrolizumab	
Santin et al		Nivolumab	Prolonged Response
Hasegava et al (2018)	23 metastatic EC pts.	Atezolizumab	ORR 13%
Oankin et al. (2019) GARNET	MSI-high/advanced EC	Dostarlimab	ORR 52%
Antill et al. (2019) PHAEDRA	Advanced/recurrent EC	Durvalumab	
Konstaninopoulos et al. (2019)	Recurrent/persisten EC	Avelumab	ORR MMR-d 27% ORR MMR-p 6%

Clinical Cancer Research

Search	Q


Advanced Search

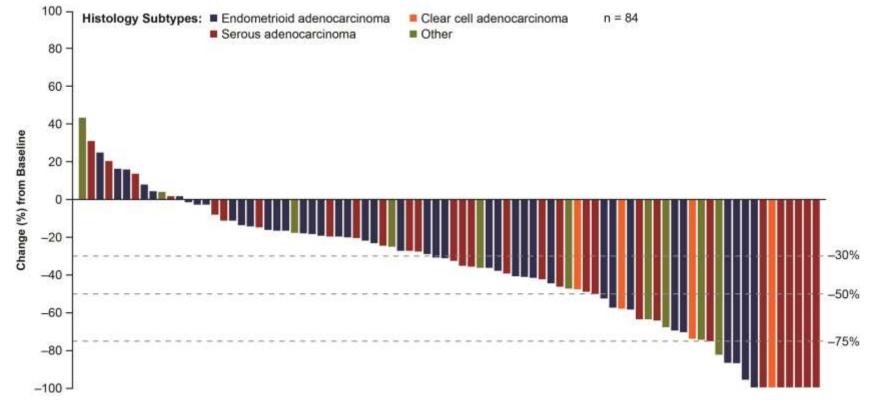
Home	About	Articles	For Authors	Alerts	News
CCR Drug	Undatan				

FDA Approval Summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors

2017 THE FIRST **AGNOSTIC** APPROVAL IN THE HISTORY OF ONCOLOGY

Lenvatinib and Pembrolizumab in Patients With Advanced Endometrial Cancer Phase 2, Open-label, Single-arm Study (NCT02501096)

*Tumor responses for primary and secondary end points were assessed by the investigator per irRECIST.

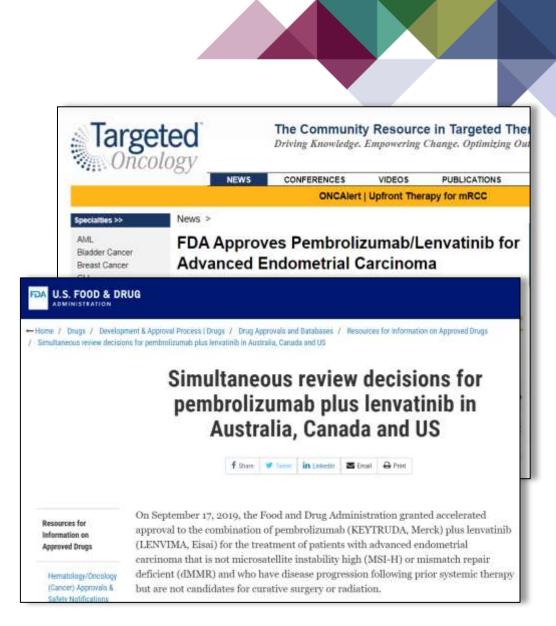


Tumor Response (Investigator Assessment; irRECIST)

Response Category	Total (n = 108)ª	Not MSI-H or dMMR (n = 94)	MSI-H / dMMR (n = 11)
Response europoily		Week 24	
Objective response rate (complete response + partial response), n (%) ^b	41 (38.0)	34 (36.2)	7 (63.6)
95% CI	28.8, 47.8	26.5, 46.7	30.8, 89.1
Response Category	A	t Data Cutoff	
Best overall response, n (%)			
Complete response	8 (7.4)	7 (7.4)	1 (9.1)
Partial response	34 (31.5)	28 (29.8)	6 (54.5)
Stable disease	49 (45.4)	44 (46.8)	3 (27.3)
Progressive disease	12 (11.1)	10 (10.6)	1 (9.1)
Not evaluable	5 (4.6)	5 (5.3)	0
Objective response rate (complete response + partial response), n (%)	42 (38.9)	35 (37.2)	7 (63.6)
95% CI ^c	29.7, 48.7	27.5, 47.8	30.8, 89.1
Duration of response (months), median (range) ^d	21.2	NE	21.2
^a The MSI or MMR status was not available for 3 patients; ^b C	(1.2+, 35.6+)	(1.2+, 33.8+)	(6.1+, 35.6+)

^aThe MSI or MMR status was not available for 3 patients; ^bORR_{wk24} and the exact 95% CIs were calculated with the Clopper-Pearson method; ^c95% CIs were calculated with the Clopper-Pearson method; ^dDuration of response was estimated with the Kaplan-Meier method.

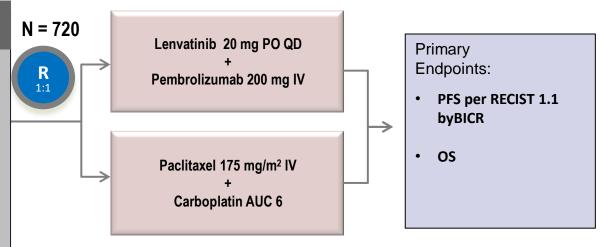
Percentage Change in Sum of Diameters of Target Lesions at Postbaseline Nadir by Histologic Subtype (Independent Imaging Review; RECIST version 1.1)



n = the number of previously treated not-MSI-H or dMMR patients with both baseline and at least 1 postbaseline target lesion assessment.

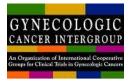
Accelerated Approval

- The FDA, the Australian Therapeutic Goods Administration, and Health Canada granted simultaneous review decisions in all 3 countries on September 17, 2019
- Lenvatinib plus pembrolizumab was granted accelerated approval for the treatment of advanced endometrial carcinoma that is not MSI-H or dMMR
- Patients must have had disease progression following prior systemic therapy and must not be candidates for curative surgery or radiation



ENGOT-en9 / LEAP-001

NCT03884101 : A Phase 3 Randomized, Open-Label, Study of Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) Versus Chemotherapy for First-line Treatment of Advanced or Recurrent Endometrial Carcinoma


KEY ELEGIBILITY

- Stage III, Stage IV or recurrent endometrial cancer
- Measurable disease or radiographically apparent disease by BICR
- May have received prior chemotherapy <u>only</u> if administered concurrently with radiation
- May have received prior radiation
- May have received prior hormonal therapy for treatment of endometrial carcinoma, provided that it was discontinued ≥1 week prior to randomization
- ECOG 0-1
- Adequate Controlled Blood pressure within 7 days prior randomization
- Available tumor tissue for determination of MMR status

Principal Investigator: Marth Sponsor: AGO-A Planned No. of patients: 720

Source : clinicaltrials.gov

New Proposals

- "RAINBO" TransPORTEC Umbrella trials for HR (I-IVa) (TransPORTEC Coll.; N=1800)
 <u>R</u>efining <u>A</u>djuvant treatment <u>IN</u> endometrial cancer <u>B</u>ased <u>O</u>n molecular features Umbrella trials (4)
- "DOMINO" Adjuvant Immuno for MMRd HR (III) (CCTG; N=170)
 <u>D</u>urvalumab as part of Post-<u>O</u>perative Therapy for <u>MI</u>smatch Repair-deficient E<u>N</u>d<u>O</u>metrial
 Ca Rand. Phase II trial CTRT + observ. vs CTRT +
 Durvalumab maint. in resect. St. III endo MMRd
- "ADELE" Adjuvant Immuno in HR (III-IVa) (ANZGOG; N=60+170+400) CTRT+CT(Portec3) + antiPD1 vs CTRT+CT (Portec3) Feasibility study + non-comp. phase II + phase III
- DUAL HER2 Adjuv. Immuno in HG serous HER2+ve (III-IVa) (ANZGOG; N=81+375) Rand. phase II (CT vs CT + Trastuzumab vs CT + Trastuzumab + Pertuzumab) (PFS) followed by rand. phase III (two winners)

POST ESMO: conclusions

> In ovarian cancer treatment according to histotype is the future!

> Antiangiogenic agents and parp inhibitors are changing the natual history of ovarian cancer disease.

➤ The best treatment algorytm is the one which allows patients to receive all the available and effective treatment options in combination or sequence.

Immunotherapy the raising star in endometrial cancer alone or in combination with TKI's